

Bilkent University
Department of Computer Science

__

CS 491 - Senior Design Project I
Project Specification Document

Agreemind (T2516)

Group Members:
Ata Oğuz - 22202453

Ata Soykal - 22202290
Can Polat Bülbül - 22203369

Edip Emre Dönger - 22201531
Emir Görgülü - 22202834

Supervisor: Hamdi Dibeklioğlu

​ ​ Instructors: Mert Bıçakçı, İlker Burak Kurt

1. Introduction​ 1

1.1. Description​ 1
1.2. High Level System Architecture & Components of Proposed Solution​ 2

1.2.1. Client Layer​ 2
1.2.2. Gateway Layer​ 2
1.2.3. Core Processing Layer​ 3
1.2.4. User Services Layer​ 3
1.2.5. Storage & Knowledge Layer​ 4

1.3. Constraints​ 4
1.3.1. Legal Constraints​ 4
1.3.2. Document Variability Constraints​ 4
1.3.3. Domain and Jurisdiction Constraints​ 5
1.3.4. Language Constraints​ 5
1.3.6. Performance Constraints​ 5
1.3.7. Economic Constraints​ 5
1.3.8. Model and Rule Interpretation Constraints​ 5
1.3.9. Version Monitoring Constraints​ 5
1.3.10. User Device Constraints​ 6

1.4. Professional and Ethical Issues​ 6
1.5. Standards​ 7

1.5.1. IEEE 830 - Software Requirements Specifications​ 7
1.5.2. UML 2.5.1 - Unified Modeling Language​ 7
1.5.3. REST API Guidelines​ 7

2. Design Requirements​ 7
2.1. Functional Requirements​ 7

2.1.1. Document Ingestion & Preparation​ 7
2.1.2. Contract Analysis​ 7
2.1.3. Risk, Obligations & Deadlines​ 8
2.1.4. Personal Vault & Querying​ 8
2.1.5. Real-Time Proactive Protection​ 8
2.1.6. Version Tracking & Change Detection​ 8
2.1.7. Contract Comparison​ 9
2.1.8. Rights Enforcer​ 9
2.1.9. Alerts & Reminders​ 9

2.2. Non-Functional Requirements​ 9
2.2.1. Usability​ 9

2.2.2. Portability​ 9
2.2.3. Maintainability​ 10
2.2.4. Reliability​ 10
2.2.5. Scalability​ 10
2.2.6. Privacy​ 10
2.2.7. Legal and Ethical Requirements​ 11

3. Feasibility Discussions​ 11
3.1. Market & Competitive Analysis​ 11
3.2. Academic Analysis​ 12

Glossary​ 14
References​ 15

1.​ Introduction​

1.1.​ Description
People regularly enter into agreements of all kinds: rental contracts, subscription services,

insurance policies, warranty policies, loan documents, employment terms, freelance contracts,
and many others. These documents form the basis of how individuals interact with companies,
service providers, landlords, financial institutions, and digital platforms. Although these
agreements shape important aspects of people’s financial, personal, and professional lives, they
are often difficult to understand. The language is typically dense and technical, key details are
buried deep within long clauses, and the implications of certain terms are not always obvious to a
non-expert reader. As a result, individuals may unknowingly accept conditions that impose
restrictive obligations, and they may overlook important deadlines or rights.

The challenge does not end once a contract is signed. Many agreements are revised over
time, sometimes without proper notification or clear explanations of how the changes affect the
user. Companies frequently update Terms of Service or privacy policies, and users have no
practical way to see what has been added or removed. Managing agreements becomes even more
difficult when people juggle multiple subscriptions, insurance plans, and recurring services
across different platforms. Users struggle not only to interpret the agreements they encounter but
also to keep track of them and maintain awareness of their rights and responsibilities throughout
the lifecycle of the contract.

Agreemind is designed to address these challenges by serving as an intelligent companion
for understanding, tracking, and acting upon personal agreements. It analyzes documents in
natural language, translates complex clauses into clear explanations, highlights terms that may be
risky or unusually strict, and identifies obligations or deadlines the user must keep in mind. It
stores processed agreements in a secure personal vault, making it possible to revisit them, search
across them, or compare different versions or drafts. When companies update their terms,
Agreemind identifies and explains the changes, ensuring that users stay informed.

Beyond interpretation, the system also helps users act on their rights by identifying
possible actions and generating drafts or templates tailored to the relevant clause. By centralizing
documents, offering meaningful analysis, and providing practical tools, Agreemind enables
individuals to make informed decisions, avoid unfavorable conditions, and maintain control over
their responsibilities and protections throughout the life of an agreement.

1

1.2.​ High Level System Architecture & Components of Proposed
Solution

​
​ ​ ​ ​

Diagram also viewable from here.

1.2.1. Client Layer

●​ Web App: Provides the main user interface for uploading documents, viewing
summaries, comparing agreements, querying the system, and managing stored contracts.​

●​ Mobile App: Allows users to upload documents from their device, share files directly
into the system, and receive notifications or reminders on mobile.​

●​ Browser Extension: Enables instant, on-page analysis of Terms of Service or online
agreements before acceptance. Sends extracted page text to the API for quick risk
assessment.

1.2.2. Gateway Layer

●​ API Gateway: Acts as the unified entry point for all client requests. Routes each request
to the correct backend service or pipeline module and ensures consistent request
handling.​

2

https://www.mermaidchart.com/d/ee37cddc-fde0-4162-bb89-1c6d53ab6c1b

●​ Auth Module: Handles authentication and authorization, protecting access to
user-specific documents and data.

1.2.3. Core Processing Layer

●​ Ingestion Module: Extracts text from uploaded documents, including OCR for scanned
files. Normalizes the input and saves the original file to the Object Store.​

●​ Segmentation Module: Breaks the raw text into structured clauses and logical sections.
Produces the clause list that the analysis modules operate on.​

●​ Analysis Modules (Parallel Execution):

○​ Risk Module: Detects risky, unusual, or unfavorable clauses using the core
risk-scoring model.

○​ Timing Module: Extracts dates, renewal cycles, windows, and other time-related
constraints.

○​ Rights Module: Identifies obligations, actions, opt-outs, and user rights
embedded in clause text.​

●​ Compliance Engine: Applies rules from the knowledge base to validate clauses and
enrich the extracted features with compliance insights.​

●​ Aggregation Module: Combines all outputs from the analysis and compliance stages
into a unified, human-readable report. Uses an LLM for generating summaries,
explanations, and natural-language interpretations.

1.2.4. User Services Layer

●​ Vault Service: Manages the storage, retrieval, and organization of user agreements.
Fetches structured metadata and links to corresponding document files.​

●​ Comparison Service: Compares two documents or versions by aligning semantically
related clauses and highlighting textual and structural differences.​

●​ Chat / Query Service: Provides natural-language querying across all stored agreements.
Performs semantic search using clause embeddings and uses an external LLM to generate
responses based on retrieved context.​

3

●​ Rights & Actions Service: Displays actionable rights identified in the agreement (e.g.,
terminate, opt-out, request data). Can generate drafts and templates for executing these
actions through an LLM.​

●​ Notification Service: Periodically checks deadlines and renewal dates stored in the
database. Sends reminders and alerts to users ahead of important contractual events.

1.2.5. Storage & Knowledge Layer

●​ PostgreSQL: Stores structured analysis outputs, summaries, clause metadata, detected
deadlines, user records, and all processed results.​

●​ Object Store: Holds the original uploaded documents (PDFs, DOCX, images, webpage
snapshots) in their raw form.​

●​ Vector Store: Contains clause embeddings for semantic retrieval, document comparison,
and chat-based querying.​

●​ Rulebooks: Houses domain and jurisdiction-specific rule definitions used by the
Compliance Engine. Structured as versioned JSON files for easy updates and
extensibility.

1.3.​ Constraints

1.3.1. Legal Constraints

The system cannot provide legally binding advice. All outputs must remain
informational, explanatory, or suggestive in tone, without prescribing actions that could be
interpreted as legal counsel.

1.3.2. Document Variability Constraints

Agreements may come in diverse formats (PDFs, scans, images, URLs, raw text) with
inconsistent structure or quality. OCR errors, missing headings, and formatting issues can affect
the accuracy of clause extraction and analysis.

1.3.3. Domain and Jurisdiction Constraints

Legal rules and industry practices vary significantly. Early versions of the system can
only support a limited number of domains and jurisdictions. Expanding coverage requires adding

4

new rule sets and knowledge bases over time. Legal requirements may also evolve, requiring
continuous updates to rulebooks and domain packs to maintain accuracy.

1.3.4. Language Constraints

The system’s models may not support all languages. Agreements written in unsupported
or mixed languages may lead to reduced accuracy or incomplete analysis.​

1.3.5. Data Privacy and Security Constraints
Agreements often contain sensitive personal or financial information. Strict privacy

constraints require encrypted storage, secure transmission, minimal data retention, and restricted
use of third-party services for processing.

1.3.6. Performance Constraints

Real-time features such as the browser extension require fast inference and lightweight
processing. The Android background monitoring service must minimize battery usage and
respect OS-imposed background execution limits. Real-time detection on Android must rely on
lightweight heuristics to avoid excessive CPU or memory consumption.

1.3.7. Economic Constraints

The system must be developed and maintained within limited financial resources.
Storage, compute, and external model usage should be optimized to reduce ongoing operational
costs. Where possible, open-source tools, lightweight models, and cost-efficient deployment
options shall be used to ensure the system remains financially sustainable.

1.3.8. Model and Rule Interpretation Constraints

AI models and rule-based systems have inherent limitations. They may miss subtle legal
nuances or misclassify complex clauses. System outputs must account for these uncertainties and
communicate that interpretations are probabilistic.

1.3.9. Version Monitoring Constraints

Detecting updates to external agreements (such as Terms of Service pages) depends on
the availability, accessibility, and stability of source URLs, which the system cannot fully
control.

1.3.10. User Device Constraints

Browser extension capabilities and mobile protection integrations depend on platform
APIs and OS permissions, which may restrict certain functionalities.

5

1.4.​ Professional and Ethical Issues
The development of Agreemind involves several professional and ethical considerations

due to the sensitive nature of legal documents and the use of AI-generated interpretations. A key
issue is ensuring that all summaries, risk flags, and explanations remain strictly informational
and do not present themselves as legal advice. The system clearly informs users of these
limitations so that they understand the scope of the tool and do not rely on it as a substitute for
professional legal counsel.

Data privacy and confidentiality are central concerns. Users upload documents that may
contain personal, financial, or contractual information, and the system handles this material with
strict security measures. All data is stored and transmitted securely, with controlled access to
prevent unauthorized use. Ethical development also includes minimizing data collection,
allowing users to delete their information, and maintaining transparency about how documents
are processed and used.

Because the system relies on automated classification and analysis, fairness and accuracy
represent additional ethical considerations. The models and rulebooks undergo regular validation
to reduce misclassifications, biases, or misleading interpretations. Users are informed about the
limitations of automated analysis so they understand that the outputs support decision-making
but do not represent definitive judgments.

On the professional conduct side, the development team maintains responsible
engineering practices throughout the project. Team members communicate regularly, document
design decisions, and collaborate to ensure consistent implementation across modules. Code
changes go through review to maintain quality and ensure proper handling of sensitive data. The
team shares collective responsibility for addressing ethical concerns and for ensuring that user
trust and transparency guide the project’s development.

1.5.​ Standards

1.5.1. IEEE 830 - Software Requirements Specifications

The IEEE 830 standard is utilized to rigorously define the functional and non-functional
requirements of the system, ensuring clarity and completeness in the specification document.

6

1.5.2. UML 2.5.1 - Unified Modeling Language

UML 2.5.1 is employed as the standard for visualizing the system's architecture, ensuring
that the interactions between the diverse client applications and the backend are clearly mapped.
Specifically, Sequence and Class diagrams will be used to model the modular architecture.

1.5.3. REST API Guidelines

The system adheres to REST architectural principles to ensure stateless and scalable
communication between the backend and its various clients, including the web dashboard,
mobile app, and browser extension. This standardization allows for efficient resource
management.

2.​ Design Requirements​

2.1.​ Functional Requirements

2.1.1. Document Ingestion & Preparation

●​ The system shall allow users to add agreements via file upload (PDF, DOCX, text),
pasting text, sharing from mobile, or importing HTML pages.

●​ The system shall extract text from documents (including OCR for scanned files) and
segment content into structured clauses with headings, numbering, and positions.

2.1.2. Contract Analysis

●​ The system shall generate a high-level plain-language summary for each uploaded
agreement.

●​ The system shall classify each clause by type (renewal, fees, liability, dispute resolution,
privacy).

●​ The system shall detect potentially risky or unfair clauses and assign a risk level using a
color-coded representation.

●​ The system shall provide short explanations describing why each flagged clause may
pose a risk.

●​ The system shall check clauses against domain- and jurisdiction-specific rules to identify
likely compliance issues.

7

2.1.3. Risk, Obligations & Deadlines

●​ The system shall detect risk patterns, both general (unilateral changes, arbitration clauses,
etc.) and domain-specific.

●​ The system shall identify actionable obligations within clauses (canceling, opting out,
filing a claim) and extract action details such as channel (email/portal), contact
information, and actor.

●​ The system shall extract time-sensitive elements (e.g., “within 14 days”, “before
renewal”, fixed dates) and convert them into structured deadlines.

2.1.4. Personal Vault & Querying

●​ The system shall maintain a secure personal vault where users can save, store, and revisit
analyzed agreements.

●​ Users shall be able to query their stored agreements through a natural-language chatbot.
●​ Users shall be able to search through all stored agreements using natural language

(multi-document query).

2.1.5. Real-Time Proactive Protection

●​ A browser extension and mobile share-sheet integration shall allow users to analyze
contracts before accepting them.

●​ The system shall display a quick risk overview and highlight severe clauses directly
during pre-acceptance flows.

●​ The Android client shall include a background monitoring service that detects when a
Terms of Service or similar agreement screen appears and prompts the user to run an
analysis.

2.1.6. Version Tracking & Change Detection

●​ The system shall track multiple versions of the same agreement and store them as part of
the contract’s history.

●​ When a new version is detected, the system shall compare it against previous versions,
highlighting added, removed, or modified clauses.

●​ The system shall provide a side-by-side comparison with summaries explaining the
significance of changes.

2.1.7. Contract Comparison

●​ Users shall be able to compare two separate contracts or drafts side-by-side.
●​ The system shall align semantically similar clauses and highlight differences in text,

risks, obligations, and deadlines.

8

2.1.8. Rights Enforcer

●​ The system shall identify which legal rights a user may exercise based on the contract
and applicable regulations.

●​ For actionable rights, the system shall generate a draft formal request (e.g., data access,
contract termination, opt-out).

●​ The system shall locate and present relevant contact channels (emails, URLs, forms) to
send such requests.

2.1.9. Alerts & Reminders

●​ The system shall detect upcoming contract-related events such as renewal dates,
cancellation deadlines, claim windows, and payment obligations.

●​ The system shall schedule timely reminders based on extracted deadlines and notify the
user before key events occur.

2.2.​ Non-Functional Requirements

2.2.1. Usability

●​ The user interface shall present summaries, clause flags, and risks in clear and readable
formats understandable by non-experts.

●​ Color-coded indicators for risk levels shall follow accessibility guidelines.
●​ The UI for the mobile app should be intuitive and easy to use.

2.2.2. Portability

●​ The system shall run on major modern browsers and mobile operating systems.
●​ The backend shall be deployable on major cloud platforms without major modification.
●​ The browser extension shall support Chromium-based browsers and Firefox, subject to

platform API limits.

2.2.3. Maintainability

●​ The system shall use a modular architecture so that core analysis components (clause
classification, risk detection, obligation extraction) are independent from domain-specific
logic.

●​ New domains, rule sets, or knowledge bases shall be addable as separate, self-contained
modules without modifying core code.

9

●​ Regulatory or industry-specific rules shall be stored in external, versioned configuration
files so they can be updated or expanded easily.

●​ The system shall expose clear internal interfaces that define how domain modules interact
with the core engine, enabling low coupling and simple future extension.

●​ Updating or replacing domain modules, rules, or knowledge bases shall not require
system downtime.

●​ Code shall be consistently structured and documented to support long-term
maintainability.

2.2.4. Reliability

●​ The system shall maintain high availability.
●​ The vault and document records shall not be lost due to server errors; periodic backups

must be maintained.
●​ Notification services shall reliably trigger reminders before deadlines.

2.2.5. Scalability

●​ The analysis pipeline shall scale horizontally to handle multiple simultaneous document
uploads.

●​ The system shall support growth in the number of users and stored documents without
significant performance degradation.

●​ The vector store and search mechanisms shall support large embedding collections
efficiently.

2.2.6. Privacy

●​ Users shall retain full ownership of uploaded contracts and analysis results.
●​ No contract text or user-generated data shall be used for model training or external

sharing without explicit opt-in.
●​ The system shall provide mechanisms for deleting individual documents from the vault

and deleting the entire user account and all associated data.
●​ The system shall comply with applicable data protection laws.

2.2.7. Legal and Ethical Requirements

●​ The system shall clearly communicate that it does not provide legal advice and should be
used as an informational tool.

●​ Explanations, warnings, and summaries shall be generated in a neutral, non-directive
tone.

10

●​ The system shall ensure transparency regarding data usage, automated decision-making,
and third-party integrations.

3.​ Feasibility Discussions​

3.1.​ Market & Competitive Analysis
The current legal technology market is predominantly focused on enterprise solutions,

serving law firms and large corporations with complex contract lifecycle management tools.
While these tools are powerful, they leave a significant gap in the consumer market. Individuals
are frequently exposed to complex agreements, ranging from software Terms of Service to rental
leases and freelance contracts, but lack accessible tools to understand or manage them.

Agreemind addresses this gap by positioning itself as a "Personal Legal Companion"

rather than a corporate tool. Unlike existing solutions that focus on drafting or B2B compliance,
Agreemind focuses on the reception of contracts, empowering the individual signer. Below is an
analysis of similar tools and how Agreemind distinguishes itself:

●​ Enterprise Legal AI (Ironclad, Kira Systems, Luminance): These platforms utilize

advanced machine learning for clause detection and contract review. They are designed
for corporate legal teams to streamline workflows and ensure compliance [1], [2], [3].

Differentiation: These tools are cost-prohibitive and overly complex for individual users.

Agreemind is built for the "non-expert reader," prioritizing the translation of "legalese" into plain
language and offering a user-centric interface rather than a corporate dashboard.

●​ Crowdsourced Transparency Projects (ToS;DR, Open Terms Archive): These
initiatives rely on community contributions to grade and summarize the Terms of Service
for popular websites [4], [5].

Differentiation: These platforms suffer from limited coverage and cannot handle

arbitrary personal documents (e.g., a specific landlord’s lease or a freelance NDA). Agreemind
utilizes AI to analyze any document uploaded by the user, providing immediate, personalized
analysis rather than relying on a pre-existing database.

●​ Real-time ToS Detectors (Termzy AI): These tools often exist as browser extensions

that analyze terms while a user browses the web [6].

11

Differentiation: While helpful for web browsing, these tools lack lifecycle management.
Agreemind differentiates itself through its "Personal Vault" and "Rights Enforcer," which allow
users to store agreements, track changes over time, and actively generate legal request drafts long
after the document is signed.

In summary, while the market contains high-end corporate tools and basic
web-summarizers, Agreemind stands out by combining the analytical power of enterprise AI
with the accessibility required for consumer use. It shifts the user's role from passive acceptance
to active management.

3.2.​ Academic Analysis

The development of Agreemind relies on established and emerging research in Natural
Language Processing (NLP) and Information Retrieval, specifically focusing on the legal domain
(Legal NLP). By integrating methodologies from these fields, the platform ensures that its
simplification and risk detection mechanisms are computationally sound.

●​ Legal Text Simplification and Abstractive Summarization: Academic research in text
simplification often utilizes Transformer-based architectures (such as BERT or GPT
variants) to transform complex syntactic structures into simpler forms while retaining
semantic meaning. Agreemind leverages these "Sequence-to-Sequence" models to
perform abstractive summarization. This approach allows the system to generate natural
language explanations of dense clauses, moving beyond simple extractive methods that
only highlight existing sentences [7], [8].

●​ Automated Risk Detection and Classification: The classification of legal clauses
involves identifying specific categories (e.g., "Liability," "Termination," "Arbitration")
and assessing their sentiment or risk profile. Research in "Legal Judgment Prediction"
and "Unfair Clause Detection" demonstrates that training classifiers on labeled legal
datasets allows for the probabilistic identification of potentially unfair terms [9].
Agreemind incorporates these classification techniques to assign risk levels (color-coded
indicators) to specific clauses, alerting users to non-standard or aggressive obligations.

●​ Retrieval-Augmented Generation (RAG) for Document Querying: To enable the
"Personal Vault & Querying" feature, Agreemind utilizes Retrieval-Augmented
Generation (RAG) enhanced by Dense Passage Retrieval (DPR) [10]. Unlike traditional
keyword search, DPR utilizes dual-encoder networks to map both user queries and
document passages into a shared dense vector space, enabling the system to retrieve
semantically relevant clauses even when exact keywords do not match. By feeding these
precise, context-rich chunks into the generation model, Agreemind allows users to ask
natural language questions (e.g., "What is the notice period?") and receive accurate

12

answers grounded strictly in the document's text, minimizing hallucinations common in
pure generative models.

●​ Temporal Information Extraction: Research in Named Entity Recognition (NER)
focuses on extracting specific entities like dates, organizations, and monetary values [11].
Agreemind applies temporal extraction techniques to identify "time-sensitive elements"
such as renewal dates and cancellation windows. This aligns with academic work on
"Temporal Relation Extraction," enabling the system to structure unstructured text into
actionable deadlines for the "Alerts & Reminders" module [12], [13].

By grounding its architecture in these academic principles: Abstractive Summarization,
Text Classification, RAG, and Temporal Extraction, Agreemind ensures a robust, scalable, and
scientifically validated approach to legal document analysis.

13

Glossary

API – Application Programming Interface

OCR – Optical Character Recognition

LLM – Large Language Model

RAG – Retrieval-Augmented Generation

DPR – Dense Passage Retrieval

NLP – Natural Language Processing

NER – Named Entity Recognition

UML – Unified Modeling Language

SRS – Software Requirements Specification

JSON – JavaScript Object Notation

14

References

[1] Ironclad – AI-powered Contract Lifecycle Management Software (2025). Retrieved from

https://ironcladapp.com/product/ai-based-contract-management

[2] Kira Systems – AI-powered Contract Analysis Software (2025). Retrieved from

https://kira.ai/solutions/legal-workflow

[3] Luminance – Legal-Grade AI Contract & Document Review Software (2025). Retrieved
from https://luminance.com/solutions/legal/

[4] ToS;DR – Crowd-sourced ToS & Privacy Policy Ratings (2025). Retrieved from
https://tosdr.org

[5] Open Terms Archive – Public Archive of Online Terms & Conditions (2025). Retrieved from
https://opentermsarchive.org

[6] Termzy AI – Real-time ToS Detection Software (2025). Retrieved from
https://www.termzyai.com/#features

[7] Kornilova, A., & Eidelman, V. (2019). BillSum: A Corpus for Automatic Summarization of
US Legislation. In Proceedings of the 2nd Workshop on New Frontiers in Summarization
(pp. 48-56).

[8] Manor, L., & Li, J. J. (2019). Plain English Summarization of Contracts. In Proceedings of
the Natural Legal Language Processing Workshop 2019 (pp. 1-11).

[9] Lippi, M., Palka, P., Contissa, G., Lagioia, F., Hanser, H., Khoroshavin, Y., ... & Sartor, G.
(2019). CLAUDETTE: an automated detector of potentially unfair clauses in online
terms of service. Artificial Intelligence and Law, 27(2), 117-139.

[10] Karpukhin, V., Oguz, B., Min, S., Lewis, P., Wu, L., Edunov, S., ... & Yih, W. T. (2020).
Dense Passage Retrieval for Open-Domain Question Answering. In Proceedings of the
2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
6769-6781).

[11] K. Pakhale, "Comprehensive Overview of Named Entity Recognition: Models,
Domain-Specific Applications and Challenges," arXiv preprint arXiv:2309.14084, 2023.

[12] Chalkidis, I., Androutsopoulos, I., & Michos, A. (2017). Extracting Contract Elements. In
Proceedings of the 16th International Conference on Artificial Intelligence and Law
(ICAIL ’17), 19–28.

15

https://ironcladapp.com/?utm_source=chatgpt.com
https://kira.ai/
https://luminance.com/
https://tosdr.org/?utm_source=chatgpt.com
https://www.termzyai.com/#features

[13] B. Jehangir, S. Radhakrishnan, and R. Agarwal, "A survey on Named Entity Recognition –
datasets, tools, and methodologies," Natural Language Processing Journal, vol. 3, p.
100017, 2023.

16

	
	1.​Introduction​
	1.1.​Description
	1.2.​High Level System Architecture & Components of Proposed Solution
	
	
	
	
	
	
	1.2.1. Client Layer
	1.2.2. Gateway Layer
	1.2.3. Core Processing Layer
	1.2.4. User Services Layer
	1.2.5. Storage & Knowledge Layer

	1.3.​Constraints
	1.3.1. Legal Constraints
	1.3.2. Document Variability Constraints
	1.3.3. Domain and Jurisdiction Constraints
	1.3.4. Language Constraints
	1.3.6. Performance Constraints
	1.3.7. Economic Constraints
	1.3.8. Model and Rule Interpretation Constraints
	1.3.9. Version Monitoring Constraints
	1.3.10. User Device Constraints

	1.4.​Professional and Ethical Issues
	1.5.​Standards
	1.5.1. IEEE 830 - Software Requirements Specifications
	1.5.2. UML 2.5.1 - Unified Modeling Language
	1.5.3. REST API Guidelines

	2.​Design Requirements​
	2.1.​Functional Requirements
	2.1.1. Document Ingestion & Preparation
	2.1.2. Contract Analysis
	
	2.1.3. Risk, Obligations & Deadlines
	2.1.4. Personal Vault & Querying
	2.1.5. Real-Time Proactive Protection
	2.1.6. Version Tracking & Change Detection
	2.1.7. Contract Comparison
	2.1.8. Rights Enforcer
	2.1.9. Alerts & Reminders

	2.2.​Non-Functional Requirements
	2.2.1. Usability
	2.2.2. Portability
	2.2.3. Maintainability
	2.2.4. Reliability
	2.2.5. Scalability
	2.2.6. Privacy
	2.2.7. Legal and Ethical Requirements

	3.​Feasibility Discussions​
	3.1.​Market & Competitive Analysis
	3.2.​Academic Analysis

	
	Glossary
	
	References

