

Bilkent University

Department of Computer Engineering

CS 491 Senior Design Project I
T2516

Agreemind

Analysis and Requirements Report

Ata Oğuz, 22202453, ata.oguz@ug.bilkent.edu.tr

Ata Soykal, 22202290, ata.soykal@ug.bilkent.edu.tr
Can Polat Bülbül, 22203369, polat.bulbul@ug.bilkent.edu.tr

Edip Emre Dönger, 22201531, emre.donger@ug.bilkent.edu.tr
Emir Görgülü, 22202834, emir.gorgulu@ug.bilkent.edu.tr

Supervisor: Hamdi Dibeklioğlu

Course Instructors: Mert Bıçakçı, İlker Burak Kurt

2

Contents

1 Introduction 3

2 Current System 3

3 Proposed System 5

3.1 Overview 5

3.2 Functional Requirements 6

3.2.1 Document Ingestion & Preparation 6

3.2.2 Contract Analysis 6

3.2.3 Risk, Obligations & Deadlines 6

3.2.4 Personal Vault & Querying 7

3.2.5 On-Demand Proactive Protection 7

3.2.6 Version Tracking & Change Detection 7

3.2.7 Contract Comparison 8

3.2.8 Rights Enforcer 8

3.2.9 Alerts & Reminders 8

3.3 Non-functional Requirements 8

3.3.1 Usability 8

3.3.2 Portability 9

3.3.3 Maintainability 9

3.3.4 Reliability 9

3.3.5 Scalability 10

3.3.6 Privacy 10

3.4 Pseudo Requirements 10

3.5 System Models 11

3.5.1 Scenarios 11

3.5.2 Use-Case Models 20

3.5.3 Object and Class Model 21

3.5.4 Dynamic Models 22

3.5.5 User Interface 32

4 Other Analysis Elements 41

4.1 Consideration of Various Factors in Engineering Design 41

4.1.1 Constraints 41

4.1.2 Consideration of Global, Cultural, Social, Environmental, and Economic
Factors in Engineering Design 44

4.1.3 Standards 46

4.2 Risks and Alternatives 46

4.3 Project Plan 48

4.4 Ensuring Proper Teamwork 53

4.5 Ethics and Professional Responsibilities 54

4.6 Planning for New Knowledge and Learning Strategies 54

5 Glossary 55

6 References 57

3

1 Introduction

For an average person, navigating today's agreements, from digital Terms of
Service to rental agreements, has become an extremely difficult task. Critical
obligations are frequently covered by dense legal jargon, which causes users
to unintentionally accept restrictive conditions, ignore significant rights, or miss
crucial deadlines. By acting as a personal AI companion to assist people in
comprehending, monitoring, and carrying out their agreements, Agreemind
minimizes this vulnerability. Agreemind, in contrast to corporate tools, is
designed for the individual signer and uses sophisticated Natural Language
Processing (NLP) to convert complicated clauses into understandable,
straightforward explanations.

The system acts as a protective layer, automatically detecting risk patterns,
hidden obligations, and aggressive terms before a user commits. Accessible
via multiple platforms, Agreemind supports the entire contract lifecycle. The
Browser Extension offers real-time protection by analyzing online terms prior to
acceptance, while the Personal Vault securely organizes existing documents.

Beyond simple analysis, Agreemind empowers active management through the
Rights Enforcer, which highlights actionable rights (like data access or
cancellation) and generates draft templates to help users exercise them.
Additional features include a Comparison Service to track version changes and
a Notification Service for upcoming renewals. By centralizing document storage
and providing actionable AI-driven insights, Agreemind shifts the user’s role
from passive acceptance to informed control, ensuring they remain protected
throughout the life of an agreement.

2 Current System

The current legal technology environment is overwhelmingly leaned towards
enterprise solutions, supplying primarily to law firms and corporations with
complex contract lifecycle management needs. While these tools are powerful,
they create a significant void in the consumer market, leaving individuals to
navigate complex agreements from software Terms of Service to rental leases,
without adequate resources or assistance. The default approach for most
people is a manual, "sign-and-forget" methodology, which is neither feasible
nor safe given the density of legal language and the frequency of unnotified
updates. Unlike corporate teams equipped with sophisticated AI platforms, the
average user lacks accessible tools to interpret obligations or track changes,
often resulting in the passive acceptance of unfavorable terms.

Agreemind addresses this disparity by positioning itself as a "Personal Legal
Companion" dedicated to the individual signer rather than the corporate drafter.
By integrating comprehensive analysis, storage, and enforcement tools,
Agreemind shifts the user from a state of vulnerability to one of active, informed
management. The following table outlines the limitations of existing solutions
and how Agreemind distinguishes itself:

4

Table 1: Current Systems and Agreemind’s Differentiation.

Category & Examples Description and Agreemind’s Differentiation

Enterprise Legal AI

(Ironclad, Kira Systems,

Luminance)

These systems employ sophisticated machine
learning models to automate clause detection and
streamline the review process. They are
engineered exclusively for corporate legal
departments to optimize compliance workflows and
manage high-volume commercial contracts [1], [2],
[3].

Differentiation:
Such platforms are typically cost-prohibitive and
too intricate for the average consumer. Agreemind
is specifically designed for the "non-expert reader,"
focusing on translating complex legal terminology
into plain language and providing an accessible
interface rather than a dense corporate dashboard.

Crowdsourced

Transparency Project

(ToS;DR, Open Terms

Archive):

These initiatives rely on community contributions to
grade and summarize the Terms of Service for
popular websites [4], [5].
Differentiation:

These platforms suffer from limited coverage and
cannot handle arbitrary personal documents (e.g.,
a specific landlord’s lease or a freelance NDA).
Agreemind utilizes AI to analyze any document
uploaded by the user, providing immediate,
personalized analysis rather than relying on a pre-
existing database.

Real-time ToS Detector

(Termzy AI)

These tools generally function as browser
extensions, designed to scan and flag terms and
conditions on websites at the exact moment of user
interaction [6].

Differentiation:
While effective during browsing, these tools lack
post-acceptance support. Agreemind distinguishes
itself by managing the full agreement lifecycle;
features like the "Personal Vault" and "Rights
Enforcer" allow users to archive contracts, track
updates over time, and draft legal requests long
after the initial signing.

General-Purpose AI

Chatbots

These large language models allow users to paste
text or upload documents and ask for summaries
or explanations. They are widely accessible and
can handle general queries about text.

5

(ChatGPT, Gemini,

Claude)

Differentiation:

These tools have significant privacy risks (data
usage for training), lack specific legal safeguards,
and do not provide a secure "Personal Vault" for
long-term storage. Agreemind is a purpose-built
environment that ensures data privacy, tracks
deadlines, and enforces rights long after the chat
session ends.

Online Legal Services

(LegalZoom, Rocket

Lawyer)

These platforms function as a bridge between
personal legal work and hiring a traditional law firm.
Their primary business model revolves around
document assembly and human attorney
connection. Users can access libraries of pre-
drafted templates (such as wills, LLC formation
documents, or rental leases) and customize them
through a questionnaire-based interface [7], [8].

Differentiation:

These services are often expensive and slow,
relying on human intervention or generic templates.
Agreemind provides rapid, automated analysis for
contracts at a fraction of the cost, empowering
users to understand documents without waiting for
a consultation.

3 Proposed System

3.1 Overview

Agreemind is a consumer-facing legal assistance platform that helps
everyday users understand and manage online Terms of Service, Privacy
Policies, and common consumer contracts by providing plain-language
explanations, risk-focused highlights, and deadline/obligation extraction.

The system accepts agreements through multiple entry points (mobile
app, web interface, and a browser extension that can forward the current page),
then processes the content through a centralized backend pipeline that parses
documents, identifies clause boundaries, generates summaries, flags
potentially risky terms (e.g., data sharing, auto-renewal, arbitration), and
extracts key dates for reminders.

Agreemind is designed to support informed decision-making rather than
replace legal professionals; therefore, outputs are presented as informational
guidance with clear uncertainty and source traceability to the original text.
Users can optionally store agreements in a personal vault for later search and
comparison, with privacy and security controls applied across storage and any
interactions with external AI services.

6

3.2 Functional Requirements

3.2.1 Document Ingestion & Preparation

● The system must allow users to input agreements through various
channels to ensure ease of access. This includes standard file uploads
(PDF, DOCX, text files), direct text pasting, importing from HTML pages,
and sharing directly from mobile devices.

● Upon ingestion, the system must be capable of performing Optical
Character Recognition (OCR) on scanned documents or images to
convert them into machine-readable text.

● The system must parse the raw text to identify and segment the content
into a structured format. This involves detecting and tagging logical units
such as clauses, section headings, numbering, and spatial positioning
to prepare the document for analysis.

3.2.2 Contract Analysis

● The system shall automatically generate a high-level, abstractive
summary of the entire agreement. This summary must translate complex
legal terminology into plain language that is easily understandable by a
non-expert reader.

● The system must categorize each segmented clause into predefined
legal categories, such as renewal terms, fee structures, liability
limitations, dispute resolution mechanisms, and privacy policies.

● The system shall analyze clauses to detect potentially unfair, risky, or
aggressive terms. It must assign a risk level to these clauses using a
color-coded representation (e.g., Green, Yellow, Red) to visually alert
the user to danger zones.

● For every flagged risk, the system must provide a brief explanation
describing specifically why the clause is considered risky in that context.

● The system shall cross-reference clauses against a knowledge base of
domain-specific and jurisdiction-specific rules to identify likely
compliance issues or violations of consumer protection laws.

3.2.3 Risk, Obligations & Deadlines

● The system must detect specific risk patterns within the text, including
general red flags (e.g., unilateral modification clauses, forced arbitration)
and domain-specific risks tailored to the document type (e.g., a rental
lease vs. a software license).

● The system shall identify specific actions required of the user, such as
cancelling a service, opting out of data sharing, or filing a claim. It must
further extract the necessary details to perform these actions, including
the communication channel (email, web portal), contact information, and
the responsible actor.

7

● The system must identify time-sensitive elements within the text, such
as "within 14 days" or "before renewal." It shall convert these relative or
absolute references into structured, calendar-ready deadline objects.

3.2.4 Personal Vault & Querying

● The system shall maintain a secure "Personal Vault" where users can
save, organize, and retrieve their analyzed agreements. This vault must
act as a central repository for the user's legal history.

● Users shall be able to query their stored agreements through a natural-

language chatbot.

● Users shall be able to search through all stored agreements using

natural language (multi-document query).

3.2.5 On-Demand Proactive Protection

● The system shall provide a native "Share Extension" for both iOS and
Android mobile platforms. This integration allows users to manually send
content, such as PDF files, website URLs, or selected text, directly from
third-party applications (e.g., Chrome, Safari, Gmail, Drive) to
Agreemind for immediate analysis.

● Upon selecting "Agreemind" from the system share menu, the mobile
app shall automatically launch, ingest the shared content, and present
the risk analysis summary without requiring the user to manually save
and upload files.

● If a user shares a URL (e.g., a link to a Terms of Service page), the
system shall automatically fetch the full HTML content of that page,
parse the legal text, and generate a report.

● If the device is offline when content is shared, the system shall queue
the request and process the analysis once connectivity is restored.

3.2.6 Version Tracking & Change Detection

● The system shall track and store multiple versions of the same
agreement over time, maintaining a complete history of the contract's
lifecycle.

● When a new version of a stored agreement is detected or uploaded, the
system must automatically compare it against the previous version. It
shall highlight specific clauses that have been added, removed, or
modified.

● The system shall provide a side-by-side comparison view that includes
generated summaries explaining the practical significance of the
detected changes, rather than just showing raw text diffs.

8

3.2.7 Contract Comparison

● Users must be able to select two separate contracts or drafts and
compare them side-by-side within the interface.

● The system shall align semantically similar clauses between the two
documents (even if they are in different orders) and highlight the
differences in text, identified risks, obligations, and deadlines.

3.2.8 Rights Enforcer

● The system must actively identify which legal rights a user is entitled to
exercise based on the contract's text and applicable regulations (e.g.,
GDPR rights, consumer cancellation rights).

● For identified actionable rights, the system shall be capable of
generating formal draft requests, such as letters for data access,
contract termination, or opting out of specific clauses.

● The system shall automatically locate and present the relevant contact
channels extracted from the documents such as email addresses, URL
forms, or physical addresses, to facilitate the sending of these requests.

3.2.9 Alerts & Reminders

● The system must continuously monitor stored agreements for upcoming
critical events, including renewal dates, cancellation deadlines, claim
windows, and payment due dates.

● Based on the extracted deadlines, the system shall schedule and
dispatch timely notifications to the user. These reminders must be sent
sufficiently in advance to allow the user to take necessary action before
the opportunity expires.

3.3 Non-functional Requirements

3.3.1 Usability

● The user interface shall present summaries, clause flags, and risks in

clear and readable formats understandable by non-experts.

● Color-coded indicators for risk levels shall follow accessibility guidelines.

● The UI for the mobile app should be intuitive and easy to use.

● The application shall support "Dark Mode" and dynamic text sizing to

accommodate user preferences and reduce eye strain during reading.

3.3.2 Portability

● The system shall run on major modern browsers and mobile operating

systems.

9

● The backend shall be deployable on major cloud platforms without major

modification.

● The browser extension shall support Chromium-based browsers and

Firefox, subject to platform API limits.

● The backend services shall be containerized (Docker) to ensure

consistent deployment across different cloud providers (AWS, Azure,

GCP) or on-premise servers.

● The mobile application shall be compatible with Android 12+ and iOS

15+, covering the active mobile users.

3.3.3 Maintainability

● The system shall use a modular architecture so that core analysis

components (clause classification, risk detection, obligation extraction)

are independent from domain-specific logic.

● New domains, rule sets, or knowledge bases shall be addable as

separate, self-contained modules without modifying core code.

● Regulatory or industry-specific rules shall be stored in external,

versioned configuration files so they can be updated or expanded easily.

● The system shall expose clear internal interfaces that define how domain

modules interact with the core engine, enabling low coupling and simple

future extension.

● Updating or replacing domain modules, rules, or knowledge bases shall

not require system downtime.

● Code shall be consistently structured and documented to support long-

term maintainability.

3.3.4 Reliability

● The system shall maintain high availability.

● The vault and document records shall not be lost due to server errors;

periodic backups must be maintained.

● Notification services shall reliably trigger reminders before deadlines.

● The system shall implement a Mean Time to Recovery (MTTR) in the

event of a critical service crash.

● The notification service shall employ a retry mechanism to ensure

delivery of critical deadline reminders in case of temporary network

failure.

10

3.3.5 Scalability

● The analysis pipeline shall scale horizontally to handle multiple

simultaneous document uploads.

● The system shall support growth in the number of users and stored

documents without significant performance degradation.

● The vector store and search mechanisms shall support large embedding

collections efficiently.

3.3.6 Privacy

● Users shall retain full ownership of uploaded contracts and analysis

results.

● No contract text or user-generated data shall be used for model training

or external sharing without explicit opt-in.

● The system shall provide mechanisms for deleting individual documents

from the vault and deleting the entire user account and all associated

data.

● The system shall comply with applicable data protection laws.

● All personal data and document text shall be encrypted.

● The system shall implement a logical separation of data, ensuring that a

user's document embeddings in the vector store are isolated and cannot

be queried by other users.

3.4 Pseudo Requirements

● Agreemind will target users across multiple platforms, allowing access

through a Web App, Mobile App, and Browser Extension to ensure

contract analysis is available on any device.

● Git and GitHub will be used for version control

● Jira will be used for issue tracking and managing the project

● PostgreSQL will be used as the primary relational database to store

structured analysis outputs, clause metadata, user records, and

detected deadlines.

● Python will serve as the primary programming language for the backend

and the core processing layer, chosen for its extensive support for NLP

libraries and AI integration.

● FastAPI will be used to develop the REST API, ensuring stateless and

scalable communication between the backend and the web, mobile, and

extension clients.

11

● React Native will be utilized to construct the Web App interface,

providing a responsive and user-friendly dashboard for managing the

"Personal Vault".

● PyTorch and the Hugging Face Transformers library will be used to

implement the Abstractive Summarization and Risk Detection modules

using BERT or GPT variants.

● LangChain (or custom pipelines) will be used to orchestrate the

Retrieval-Augmented Generation (RAG) flows, connecting the analysis

modules with the LLM for the "Chat/Query Service".

● AWS S3 (or compatible Object Store) will be used to securely store the

original uploaded documents (PDF, DOCX) in their raw format.

● Docker will be used to containerize the application services, ensuring

consistency across development and production environments.

● Zoom will be used for synchronous meetings and real-time project

discussions, while WhatsApp will be used for asynchronous

communication.

● Automated Clause Classifiers will be trained to detect potentially unfair

terms and assign risk levels (color-coded indicators) based on labeled

legal datasets.

● Named Entity Recognition (NER) models will be used to extract time-

sensitive elements and specific entities, such as renewal dates and

cancellation windows, to structure actionable deadlines.

● Chromium and Firefox APIs will be utilized to construct the browser

extension, enabling real-time, on-page analysis of online agreements

before acceptance.

3.5 System Models

3.5.1 Scenarios

Scenario 1: Sign Up

Primary Actor: End User

Supporting Actors: Agreemind Mobile/Web UI, Backend API, Authentication

Serviced

Entry Condition: User is on the Sign Up screen and is not authenticated.

Exit Condition (Success): User account is created; user is authenticated

and redirected to the home/dashboard screen.

Main Flow:

1. User selects Sign Up.

2. System displays a registration form (e.g., email, password, confirm
password).

3. User submits the form.

12

4. Backend validates input (email format, password policy, uniqueness of
email).

5. Backend creates the user account and issues an authentication
token/session.

6. Client stores the session securely and navigates the user to the main
app screen.

Alternative/Exception Flows:

● A1 (Email Already Registered): System informs the user and offers
Log In or Reset Password.

● A2 (Weak Password): System rejects the password and displays the

password requirements.

● A3 (Network/API Error): System shows a retry message; no account

is created unless confirmation is received.

Scenario 2: Log In

Primary Actor: End User

Supporting Actors: Agreemind Mobile/Web UI, Backend API, Authentication

Service

Entry Condition: User is on the Log In screen and is not authenticated.

Exit Condition (Success): User is authenticated and can access the vault
and saved reports.

Main Flow:

1. User selects Log In.

2. User enters email and password.

3. Client submits credentials to backend.

4. Backend validates credentials and issues an authentication
token/session.

5. Client stores the session securely and redirects to the home/dashboard
screen.

Alternative/Exception Flows:

● A1 (Invalid Credentials): System displays an error message and
allows retry without revealing which field was incorrect.

● A2 (Account Locked/Rate Limited): After repeated failures, system

temporarily blocks attempts and informs the user.

● A3 (Session Expired): If an existing session is invalid/expired, system

requests login again.

Scenario 3: Log Out

13

Primary Actor: End User

Supporting Actors: Agreemind UI, Backend API (optional), Authentication
Service

Entry Condition: User is authenticated and is in the app.

Exit Condition (Success): Session is cleared on the client (and invalidated
server-side if applicable); user returns to the login screen.

Main Flow:

1. User selects Log Out from settings/menu.

2. Client clears local session tokens securely.

3. Client navigates to the Log In screen.

4. Backend invalidates the token/session.

Alternative/Exception Flows:

● A1 (Offline Logout): Client still clears local session; server invalidation

occurs on next connection.

Scenario 4: Forgot Password

Primary Actor: End User

Supporting Actors: Agreemind Mobile/Web UI, Backend API, Authentication

Service, Email Service

Entry Condition: User is on the Log In screen and cannot access their
account.

Exit Condition (Success): User sets a new password and can log in
successfully.

Main Flow:

1. User selects Forgot Password on the Log In screen.
2. System prompts for the account email address.
3. User enters email and submits.
4. Backend verifies that the email exists (without revealing account

existence explicitly, if you choose to prevent enumeration).
5. Backend generates a time-limited reset token and sends a reset

link/code to the email address.
6. User opens the reset link (or enters the code) and sets a new

password.
7. Backend validates the new password, updates credentials, and

confirms success.
8. User logs in with the new password.

Alternative/Exception Flows:

14

● A1 (Invalid/Expired Token): System rejects the reset attempt and
asks the user to request a new reset email.

● A2 (Weak Password): System rejects the password and shows
password policy requirements.

● A3 (Email Delivery Failure): System shows a retry option and
suggests checking spam/junk folders.

● A4 (Rate Limiting): System limits reset requests to prevent abuse and
informs the user to wait before retrying.

Scenario 5: Upload an Agreement PDF and Generate an Analysis Report

Primary Actor: End User

Supporting Actors: Agreemind Mobile/Web UI, Backend API, Document
Processing Service, LLM Service

Entry Condition: User is on the “New Analysis / Upload” screen; user is
authenticated (or using a guest mode if supported).

Exit Condition (Success): A new Analysis Report is created and shown to the

user; the original document is stored temporarily or in the vault depending on
user choice.

Main Flow:

1. User selects Upload PDF and chooses a file from device storage.

2. Client uploads the file to the backend.

3. Backend validates file type/size and creates an “Analysis Job” with
status Queued.

4. Document Processing extracts text (OCR if needed) and normalizes
formatting.

5. Clause segmentation runs and produces clause boundaries.

6. The LLM pipeline generates: (a) plain-language summary, (b) risk flags
per clause, (c) extracted dates/obligations.

7. Backend stores the analysis results and marks the job Completed.

8. Client displays the report: summary + risk categories + highlighted
clauses + extracted dates.

Alternative/Exception Flows:

● A1 (Unsupported File): If the file is not a supported type, backend

rejects it and client shows an error with accepted formats.

● A2 (OCR Failure/Low Confidence): If OCR fails or confidence is low,
system returns partial results and asks the user to re-upload a better
scan or paste text.

15

● A3 (LLM Unavailable): If the LLM call fails, system returns extracted
text + segmentation (if available) and marks summary/risk fields as
“Unavailable.”

Scenario 6: Paste Agreement Text and Generate an Analysis Report

Primary Actor: End User

Supporting Actors: Agreemind UI, Backend API, LLM Service

Entry Condition: User is on “Paste Text” screen.

Exit Condition (Success): Report shown with summary, risk flags, and

dates.

Main Flow:

1. User pastes agreement text into the text input area.

2. Client performs basic validation (non-empty, length limits) and submits
to backend.

3. Backend stores the raw text as a new Analysis Job.

4. Backend segments clauses and runs summarization + risk detection +
date extraction.

5. Client displays the resulting report with traceability (each highlight
maps to source text).

Alternative/Exception Flows:

● A1 (Text Too Long): System prompts user to shorten or upload as
PDF; optionally supports chunking if implemented.

● A2 (Non-English Detected): System warns that MVP is English-only

and may produce unreliable output.

Scenario 7: Use Browser Extension to Analyze the Current Webpage

Primary Actor: End User

Supporting Actors: Browser Extension, Backend API, Agreemind

Web/Mobile App

Entry Condition: User is viewing a webpage likely containing ToS/Privacy

Policy; extension is installed and enabled.

Exit Condition (Success): A report is created and a badge/result is shown in
the extension popup, with a link to open the full report in the app.

Main Flow:

1. User clicks the extension icon on the current page.

2. Extension extracts page content (e.g., visible text or DOM text) and
captures the page URL.

16

3. Extension sends text + URL to backend to start an Analysis Job.

4. Backend processes text (segmentation + summary + risks + dates).

5. Extension shows a risk badge (e.g., low/medium/high) and a link to
open the detailed report.

Alternative/Exception Flows:

● A1 (Extraction Blocked): If the page blocks scripts or extraction fails,
extension prompts user to copy/paste text into the app.

● A2 (Very Large Page): Extension sends only relevant sections or

truncates with warning, or instructs user to open in-app capture.

Scenario 8: Review Risk Highlights and Inspect Supporting Evidence

Primary Actor: End User

Supporting Actors: Agreemind UI, Backend API

Entry Condition: A completed report exists and is opened.

Exit Condition (Success): User views risk highlights and understands why
they were flagged.

Main Flow:

1. User opens an Analysis Report.

2. System displays overall summary and risk categories (e.g., data
sharing, auto-renewal).

3. User selects a risk category to filter highlights.

4. System scrolls to each relevant clause and highlights the exact text
span.

5. User taps “Why flagged?” to view a short explanation and (optionally) a
confidence indicator.

Alternative/Exception Flows:

● A1 (Low Confidence): If confidence is low, the UI shows a caution

label and encourages manual review.

Scenario 9: Extract Dates/Obligations and Set a Reminder

Primary Actor: End User

Supporting Actors: Agreemind UI, Backend API, Notification/Reminder

Service

Entry Condition: Report contains extracted dates/obligations.

Exit Condition (Success): A reminder is scheduled and visible in the user’s
reminder list.

17

Main Flow:

1. User opens “Key Dates & Obligations” in the report.

2. System lists extracted items (e.g., cancellation window, renewal date)
with source clause links.

3. User selects an item and taps “Set Reminder.”

4. User chooses reminder time (e.g., 7 days before).

5. System stores the reminder and confirms success.

Alternative/Exception Flows:

● A1 (Ambiguous Date): If the date is uncertain, system labels it as

estimated and asks user to confirm/edit before saving.

Scenario 10: Save an Agreement to the Vault and Search Later

Primary Actor: End User
Supporting Actors: Agreemind UI, Backend API, Storage Service

Entry Condition: User has at least one completed report.

Exit Condition (Success): Agreement is saved and appears in the vault;
search returns relevant results.

Main Flow:

1. User chooses “Save to Vault” from the report screen.

2. User optionally enters metadata (service name, category, tags).

3. System stores the agreement + report under the user account.

4. Later, user opens Vault and searches by keyword/tag/service name.

5. System displays matching agreements and user opens one report.

Alternative/Exception Flows:

● A1 (Storage Limit Reached): System warns user and offers
deletion/upgrade (if applicable) or blocks save.

Scenario 11: Share a Webpage to Agreemind from a Mobile Device

Primary Actor: End User

Supporting Actors: Mobile OS Share Sheet (iOS/Android), Agreemind Mobile
App, Backend API, Document Processing Service, LLM Service

Entry Condition: User is viewing a webpage (e.g., ToS/Privacy Policy) in a

mobile browser or another app; Agreemind is installed and registered as a
share target.

Exit Condition (Success): A new Analysis Report is created and displayed in
Agreemind.

18

Main Flow:

1. User taps Share on the current page/app.

2. User selects Agreemind from the share sheet.

3. The OS launches Agreemind and passes shared content (typically a
URL, and optionally selected text if available).

4. Agreemind shows an “Import from Share” screen and asks the user to
confirm analysis.

5. Agreemind sends the URL (and any included text) to the backend to
create an Analysis Job.

6. Backend retrieves and/or processes the content:

○ If the backend can fetch the URL content, it extracts readable
text.

○ If only text was shared, backend analyzes the provided text
directly.

7. Backend runs segmentation + summarization + risk detection + date
extraction.

8. Agreemind displays the completed report and optionally offers “Save to
Vault.”

Alternative/Exception Flows:

● A1 (URL Fetch Not Allowed / Paywalled / Blocked): App prompts

the user to paste the text manually or open the page in a supported
browser mode.

● A2 (Non-English Detected): System warns English-only limitation and

proceeds only if user confirms.

● A3 (Very Long Content): System truncates or analyzes the most
relevant sections (with a warning), or requests the user to upload a
PDF instead.

● A4 (No Network): The app queues the analysis request and submits

when connectivity returns (if you implement offline queueing);
otherwise it asks user to retry later.

Scenario 12: Compare Two Versions of an Agreement

Primary Actor: End User

Supporting Actors: Agreemind UI, Backend API, Comparison Service

Entry Condition: User has two agreements (or two versions) available.

Exit Condition (Success): A “What changed?” view is shown with
added/removed/modified clauses.

19

Main Flow:

1. User selects “Compare Versions” and chooses Version A and Version
B.

2. Backend aligns clauses and computes differences.

3. System presents changes grouped by risk category and highlights
new/modified risky clauses.

Alternative/Exception Flows:

● A1 (Alignment Fails): System falls back to text-level diff and labels

results as coarse.

Scenario 13: Delete an Agreement and Its Analysis Results

Primary Actor: End User

Supporting Actors: Agreemind UI, Backend API, Storage Service

Entry Condition: User is viewing an agreement in the vault.

Exit Condition (Success): Agreement and associated artifacts are removed;
vault list updates.

Main Flow:

1. User selects “Delete” and confirms.

2. Backend deletes stored document, extracted text, report outputs, and
reminders (as applicable).

3. UI confirms deletion and returns to vault list.

Alternative/Exception Flows:

● A1 (Network Failure): UI shows “Delete pending” and retries, or asks
user to retry.

20

3.5.2 Use-Case Models

User-facing

System + external services

21

3.5.3 Object and Class Model

22

3.5.4 Dynamic Models

3.5.4.1 Activity Diagrams

3.5.4.1.1 Agreement Analysis Flow (Upload / Paste / Share / Extension)

23

3.5.4.1.2 Mobile Share to Agreemind

24

3.5.4.1.3 Compare Two Agreements

25

3.5.4.1.4 Reminder Scheduling and Notification Delivery

26

3.5.4.2 Sequence Diagrams

3.5.4.2.1 Upload PDF → Per-Analysis Consent → Report Generation

27

3.5.4.2.2 Mobile Share Sheet (URL/Text) → Backend Fetch → Consent → Report

28

3.5.4.2.3 Browser Extension → Quick Badge + Deep Link to Full Report

3.5.4.2.4 Compare Two Agreement Versions

29

3.5.4.3 State Diagrams

3.5.4.3.1 AnalysisJob State Diagram (core backend pipeline)

30

3.5.4.3.2 AgreementVersion State Diagram (vault item lifecycle)

3.5.4.3.3 Reminder State Diagram (notification pipeline)

31

3.5.4.3.4 ConsentRecord State Diagram

32

3.5.5 User Interface

 Login Page:

33

Homepage:

34

Contract Risk Analysis Page:

35

 Document Query Page:

36

 Contract Summary Page:

37

 Actionable Clause Page:

38

 Draft Generation Page:

39

 Document Upload Page:

40

 Contract Comparison Page:

41

4 Other Analysis Elements

4.1 Consideration of Various Factors in Engineering Design

4.1.1 Constraints

4.1.1.1 Implementation Constraints

● The project is constrained to React Native to allow for a single codebase
that deploys to iOS, Android, and Web platforms simultaneously. This
limits the use of certain web-specific DOM manipulations and CSS-in-JS
libraries that are not compatible with the React Native bridge.

● The backend is restricted to FastAPI (Python). While performant, this
constrains the system to synchronous/asynchronous patterns specific to
Python's asyncio and requires tight integration with Python-based AI
libraries (PyTorch, Transformers) rather than Node.js or Go-based
alternatives.

4.1.1.2 Legal & Regulatory Constraints

● The system operates under the strict constraint that it must not provide
legal advice. All outputs must be labeled as "informational summaries"
or "risk detections." The UI design is constrained to avoid prescriptive
language (e.g., "Do not sign this") in favor of neutral analysis (e.g., "This
clause limits your liability rights").

● As a platform processing personal contracts, the system must comply
with GDPR. This necessitates architectural features for data portability,
permanent account deletion ("Right to be Forgotten"), and strict consent
logging for data processing.

4.1.1.3 Privacy and Security Constraints

● Users upload sensitive documents. The system is constrained by a
"privacy-first" policy where user data must not be used to train the global
model without explicit opt-in.

● All data must be encrypted at rest within the Personal Vault and during
transmission using industry-standard secure communication protocols.
The system implements widely accepted open standards for
authentication and authorization to ensure that a user’s legal documents
are accessible only to them, even in a shared database environment.

4.1.1.4 Usability Constraints

● Legal documents are notoriously dense. The Web and Mobile interfaces
are constrained by internationally recognized accessibility guidelines,
requiring high contrast, screen reader compatibility, and scalable text to
ensure usability for all citizens, including those with visual impairments.

● Legal contracts are often long and difficult to read. To avoid
overwhelming the user, the interface is constrained to use a "progressive
disclosure" strategy. This means the system must show summaries and

42

critical risks first. The full, detailed legal text must remain hidden or
collapsed until the user specifically chooses to view it.

4.1.1.5 Social Constraints

● There is a social risk that users may blindly trust the AI and sign a bad
contract because the system didn't flag a specific loophole. The interface
is constrained to include "Human-in-the-Loop" reminders, encouraging
users to verify critical details manually.

● The tool is designed to democratize legal understanding. Therefore, the
"Plain Language" summaries must be written with a simpler grammar
level to ensure they are accessible to users with different levels of
understanding.

4.1.1.6 Technical Constraints

● The "Personal Vault" querying relies on Dense Passage Retrieval (DPR)
using dual-encoder networks. The system is constrained by the
semantic gap between layman user queries and formal legal
terminology. To mitigate hallucinations, the generative model is strictly
constrained to answer only using the context retrieved by the vector
store, rejecting queries where the similarity score falls below a set
threshold.

● Unlike simple extractive methods, the "Sequence-to-Sequence"
Transformer models used for abstractive summarization are
computationally intensive. Real-time processing is constrained by the
inference speed of these models, requiring asynchronous processing
queues for large documents to prevent timeout errors in the client
application.

● The "Alerts & Reminders" module utilizes Named Entity Recognition
(NER) for temporal extraction. The system is constrained by the
complexity of resolving relative legal timelines (e.g., "the first business
day following the completion of the Audit Period"). The extraction logic
is limited to specific recognizable temporal patterns and requires
heuristic fallbacks for highly ambiguous date references.

● The Automated Risk Detection classifiers are trained on labeled
datasets for specific document types (e.g., Terms of Service). The
system is constrained by "domain shift," meaning a model trained on
software licenses may fail to accurately detect unfair clauses in a rental
lease. Consequently, the system must enforce strict document
classification prior to analysis to select the appropriate risk model.

● To support efficient indexing and retrieval for the "Personal Vault," the
system is constrained to a fixed vector dimension size (e.g., 768
dimensions for BERT-based embeddings). This imposes a trade-off
between semantic precision and query latency, requiring optimized
index structures (e.g., HNSW) to maintain sub-second search speeds as
the vault grows.

43

4.1.1.7 Cost Constraints

● Since the system involves training custom models for each module, the
project is constrained by limited financial resources for computational
power. High-performance hardware accelerators are required for the
training and fine-tuning phases. This necessitates strict budget
management for cloud computing services and prevents the team from
training massive parameter models, limiting the scope to smaller, more
efficient architectures that can be trained within a finite budget.

● Hosting multiple custom-trained models requires significant memory and
processing availability continuously. The architecture is constrained to
use model optimization and compression techniques to reduce hosting
overhead. The system must be designed to run on affordable commodity
hardware or lower-cost infrastructure tiers to remain financially viable,
preventing the reliance on expensive enterprise-grade clusters for daily
operations.

Table 2: Factors that can affect analysis and design.

Constraint Type Effect level Effect

Implementation 6 React Native + FastAPI constrain UI
capabilities, shared code patterns, and
backend integration choices; encourages
one centralized API and reusable UI
components across platforms.

Legal & Regulatory 9 System must avoid legal advice, enforce
disclaimers and neutral language, and
support consent + deletion/export
features aligned with GDPR principles.

Privacy and Security 10 Contracts are sensitive; requires
encryption in transit/at rest, strict access
control, per-analysis consent for external
LLM usage, and data
minimization/retention limits.

Usability 7 Dense documents require progressive
disclosure, readability-first summaries,
accessibility (contrast, scaling, screen
readers), and explainability/traceability
from outputs back to clauses.

44

Social 6 Users may over-trust AI; requires
uncertainty signaling, “verify yourself”
messaging, and careful risk framing to
avoid harm from omissions.

Technical 8 Document variability (PDF/OCR/web),
long-text processing, async jobs, and
model reliability/domain shift constrain
what’s feasible; demands fallback
behaviors and partial results when
needed.

Cost 8 Limited budget/GPU access constrains
model training and hosting; pushes
toward smaller models, optimized
inference, bounded API usage, and
phased feature scope.

4.1.2 Consideration of Global, Cultural, Social, Environmental, and

Economic Factors in Engineering Design

Agreemind is a consumer-facing legal assistance system intended to
improve everyday users’ understanding of terms of service, privacy policies,
and common consumer contracts. Because these documents shape user
rights and obligations across many contexts, the system’s analysis and design
were influenced by global, cultural, social, environmental, and economic
factors as described below.

4.1.2.1 Global Factors

● Agreements and privacy practices differ across countries, and legal
terminology, consumer protections, and dispute resolution norms are not
globally uniform. Therefore, Agreemind was constrained to an English-
only MVP and avoided jurisdiction-specific legal conclusions. Outputs
are presented as informational summaries and risk indicators, with
explicit disclaimers and clause-level traceability.

4.1.2.2 Cultural Factors

● Legal awareness, and expectations about privacy and contractual
fairness vary culturally. To reduce misinterpretation and over-trust,
Agreemind uses plain-language explanations and avoids culturally
loaded or prescriptive language. The user interface is designed to be
neutral and respectful, prioritizing clarity and transparency.

45

4.1.2.3 Social Factors

● A major social risk is that users may rely on the system as a substitute
for professional advice or assume that “no warning” means “safe.” This
affects design through (1) visible disclaimers that the tool is not a lawyer,
(2) uncertainty signaling when the model is not confident or evidence is
weak, and (3) human-in-the-loop prompts that encourage users to read
critical clauses and verify extracted deadlines.

4.1.2.4 Environmental Factors

● Agreemind uses compute-heavy NLP models, which can increase
energy consumption, especially if large documents are processed
frequently or models are hosted continuously. This affected design by
favoring asynchronous processing (to avoid repeated retries/timeouts),
reuse of cached results for previously analyzed documents, and
preference for smaller, more efficient models where possible. The
system also limits unnecessary processing (e.g., analyzing only when
the user explicitly requests it rather than constant monitoring), which
reduces compute usage and associated environmental impact.

4.1.2.5 Economic Factors

● Many users affected by unfair terms or complex subscriptions are also
sensitive to cost. This influenced the design to keep the MVP feasible
with limited budget by using a centralized backend, controlling external
API usage through per-analysis consent, and avoiding expensive
features. The system is designed so that core value (upload → summary
→ risk highlights → key dates) can be delivered with bounded compute
costs, while advanced features (continuous version tracking, deep legal
rule engines) remain optional extensions. Internally, project constraints
such as limited GPU access also shaped the choice to prioritize feasible
model sizes and incremental improvements over training very large
models.

Table 3: Impact of Global/Cultural/Social/Environmental/Economic Factors

Factor Effect level How it affected analysis and design

Global 7 Jurisdictional variability and cross-border
data processing risks led to English-only
MVP, avoidance of legal conclusions,
traceability to source clauses, and per-
analysis consent before external LLM
calls.

Cultural 6 Differences in legal literacy and privacy
norms led to plain-language summaries,
neutral phrasing, progressive disclosure,
and accessibility-focused UI decisions.

Social 8 Over-trust risk led to disclaimers,
uncertainty/confidence indicators,
human-in-the-loop prompts, and

46

conservative wording that avoids
prescriptive legal advice.

Environmental 5 Compute/energy concerns led to user-
initiated analysis (no background
monitoring), asynchronous jobs,
caching/reuse of results, and preference
for efficient models where possible.

Economic 8 User affordability + team budget
constraints led to bounded API usage,
feasible model sizes, centralized
backend, and MVP scoping that avoids
expensive continuous features.

4.1.3 Standards

● IEEE 830: Used to define functional and non-functional requirements,

ensuring the specification document is complete and verifiable.

● UML 2.5.1: Utilized for system modeling. Class Diagrams represent
data entities, while Sequence Diagrams map interactions between the
Client Layer and API Gateway.

● REST API Guidelines: The backend (FastAPI) follows REST
principles for stateless communication with client applications, using
standard HTTP methods and status codes.

● WCAG 2.1 Level AA: Mandates contrast ratios and screen-reader

compatibility for the Web and Mobile interfaces, ensuring accessibility
for users with visual impairments.

● TLS 1.3: Secures data transmission between clients and cloud

infrastructure, preventing interception during upload or analysis.

● ISO/IEC 22989: Defines AI concepts and lifecycle management terms
to ensure consistent terminology across documentation and code.

4.2 Risks and Alternatives

● AI Misinterpretation of Legal Nuance: Legal language is highly
context-dependent, where a single word can change the entire meaning
of a clause. There is a risk that the system might oversimplify a complex
provision during summarization, causing the user to miss a subtle but
critical liability. If the system fails to flag a specifically worded loophole,
the user might sign a harmful agreement. To mitigate this, the system
must prioritize "precision over simplicity" for high-risk clauses and
always present the original text alongside the summary, encouraging
users to verify the source.

47

● User Over-Reliance: Users may develop a habit of blindly trusting the
"Green/Safe" indicators without reading the actual contract. This
"automation bias" creates a dangerous situation where a user might
agree to terms simply because the AI didn't flag them. To address this,
the user interface should be designed to prevent "one-click" acceptance,
requiring users to interact with or acknowledge specific sections before
the analysis is marked as complete.

● Data Security & Trust: The platform handles highly sensitive personal
documents (e.g., employment contracts, debt agreements). A security
breach or even a perceived lack of privacy could destroy user trust and
result in significant reputation damage. If users are hesitant to upload
documents, the system fails. Mitigation involves minimizing data
retention: processing files without permanently storing them where
possible, and maintaining transparent data usage policies.

● Input Quality Issues (OCR Failure): Since many users will capture
contracts using mobile cameras, poor lighting or shaky hands could
result in low-quality text extraction. If the underlying text is garbled, the
analysis will be flawed. The system must include a quality assurance
step that detects illegible inputs immediately and prompts the user to
retake the image rather than attempting to analyze bad data.

● Economic Sustainability: Processing long legal documents requires
significant computational resources, which creates high operational
costs. If the cost of analyzing a document exceeds the revenue or budget
allocated per user, the project may become financially unsustainable.
The alternative plan involves implementing usage limits or tiered service
levels to balance the computational load.

Table 4: Risks

 Likelihood Effect on the project B Plan Summary

AI
Misinterpretation

Medium High Side-by-side source
verification & disclaimer
prompts

User Over

Reliance

High Medium Mandatory manual review
steps for critical flags

Data Security &
Trust

Low High Data minimization &
"process-without-store"
options

Input Quality
Issues (OCR
Failure)

High Medium Automated quality checks &
retake prompts

Economic
Sustainability

Medium High Usage quotas & resource
optimization strategies

48

4.3 Project Plan

Below you can see various tables that you will make use of.

The project plan can be reported by list of work packages and their content.

For better readability, a Gantt chart based on work packages can also be
added.

Table 5: List of work packages

WP# Work package title Leader Members involved

WP1 Team Formation, Topic
Selection, Supervisor
Search

Ata Soykal All members

WP2 Innovation Expert Interviews Edip Emre
Dönger

All members

WP3 Requirements Elicitation &
Project Information Form

Can Polat
Bülbül

Ata Soykal, Emir
Görgülü

WP4 Project Specification
Document (Architecture +
Scope)

Ata Oğuz Can Polat Bülbül,
Edip Emre Dönger

WP5 Analysis & Requirements
Report (CS491 submission)

Emir
Görgülü

Emir Görgülü, Can
Polat Bülbül

WP6 Web MVP Implementation
Sprint (Auth + Upload +
Summary + Vault)

Emir
Görgülü

Ata Oğuz

WP7 CS491 Demo Preparation
(Web-only)

Ata Oğuz All members

WP8 System Hardening (Jobs,
Errors, Logging, Basic
Security)

Edip Emre
Dönger

Can Polat Bülbül,
Ata Soykal

WP9 Mobile App (React Native
iOS/Android) + Share-Sheet
Ingestion

Ata Soykal Emir Görgülü, Ata
Oğuz

WP10 Browser Extension (Send
page → badge → deep link)

Can Polat
Bülbül

Ata Soykal, Edip
Emre Dönger

WP11 Clause Highlighting +
Report Viewer (Cross-
platform)

Ata Oğuz Emir Görgülü, Ata
Soykal

WP12 Agreement Vault v2
(Search, Tags, Versions,
Compare)

Ata Oğuz Can Polat Bülbül,
Edip Emre Dönger

WP13 Custom/Local Model
Prototype + Evaluation Plan

Edip Emre
Dönger

Can Polat Bülbül,
Ata Soykal

WP14 Testing, QA, Final Demo,
and Final Report Package

Can Polat
Bülbül

All members

49

WP 1: Team Formation, Topic Selection, Supervisor Search

Start date: 2025-09-15 End date: 2025-10-10

Leader: Ata Soykal Members
involved:

All Members

Objectives: Establish the team, define a feasible project topic, and secure

a supervisor.

Tasks:
Task 1.1 Brainstorm project ideas aligned with course expectations.
Task 1.2 Identify candidate supervisors; schedule and conduct meetings.
Task 1.3 Refine project scope to match a two-semester deliverable timeline.

Deliverables
D1.1: Topic summary + supervisor confirmation.

WP 2: Innovation Assessment & Stakeholder Interviews

Start date: 2025-10-10 End date: 2025-10-31

Leader: Edip Emre Dönger Members
involved:

All Members

Objectives: Validate novelty/value, gather external perspective, and satisfy

innovation-form expectations.
Tasks:

Task 2.1 Interview 3–4 innovation experts and document feedback.
Task 2.2 Identify differentiation vs. existing legal-summary tools.
Task 2.3 Convert feedback into scope boundaries and MVP priorities.
Task 2.4 Reach an agreement with an innovation expert.

Deliverables

D2.1: Assessment of Innovation Form

WP 3: Requirements Elicitation & Project Information Form

Start date: 2025-10-14 End date: 2025-10-24

Leader: Can Polat Bülbül Members
involved:

Ata Soykal, Emir
Görgülü

Objectives: Formalize high level requirements and project framing for
CS491.

Tasks:
Task 3.1 Define target users, key use cases, and non-goals (not a lawyer
replacement).
Task 3.2 Draft initial functional/nonfunctional requirements at high level.
Task 3.3 Define initial risks and assumptions.

Deliverables
D3.1: Project Information Form

WP 4: Project Specification Document

Start date: 2025-11-01 End date: 2025-11-28

Leader: Ata Oğuz Members
involved:

Can Polat Bülbül,
Edip Emre Dönger

Objectives: Produce a concrete project spec describing architecture,

modules, constraints, and intended features.

Tasks:
Task 4.1 Define the backend architecture and module boundaries.

50

Task 4.2 Specify major subsystems (ingestion, analysis pipeline, vault,
reminders, comparison).
Task 4.3 Document constraints (privacy/security/legal) and standards.
Deliverables

D4.1: Project Specification Document

WP 5: Analysis & Requirements Report

Start date: 2025-11-29 End date: 2025-12-19

Leader: Emir Görgülü Members
involved:

Can Polat Bülbül

Objectives: Produce a detailed analysis model + testable requirements +

planning sections required by the department guideline.
Tasks:

Task 5.1 Write FR/NFR lists with numbering and testability.
Task 5.2 Produce UML diagrams (scenarios, use cases, class model,
activity/sequence/state).
Task 5.3 Write constraints, ethics, teamwork strategy, learning plan,
risks/alternatives.
Deliverables

D5.1: Analysis & Requirements Report

WP 6: Semantic Core (Segmentation, Obligations, Risk Prototypes)

Start date: 2025-12-01 End date: 2025-01-15

Leader: Edip Emre Dönger Members
involved:

Emir Görgülü

Objectives: Establish the semantic backbone of the system.

Tasks:
Task 6.1 Clause segmentation with offsets and headings.
Task 6.2 Obligation and deadline extraction.
Task 6.3 Initial risk pattern detection.
Task 6.4 Define internal representations (Clause, RiskFlag, Obligation).
Deliverables

D6.1: Working Semantic Extraction Pipeline

WP 7: Web Application MVP

Start date: 2025-12-01 End date: 2025-12-22

Leader: Ata Oğuz Members
involved:

Emir Görgülü, Can
Polat Bülbül, Ata
Soykal

Objectives: Deliver a functional web MVP for CS491 demo.

Tasks:

Task 7.1 Implement web UI, navigation and authentication flow.
Task 7.2 Upload / paste ingestion.
Task 7.3 Provide LLM-based summaries.
Task 7.4 Basic agreement vault.

Deliverables
D7.1: Web MVP build

WP 8: Mobile App MVP

Start date: 2025-12-15 End date: 2026-02-15

51

Leader: Can Polat Bülbül Members
involved:

Edip Emre Dönger,
Ata Soykal

Objectives: Build the mobile client for the app.

Tasks:

Task 8.1 Mobile UI for auth, upload, report view, vault.
Task 8.2 iOS / Android share-sheet ingestion
Task 8.3 UI stabilization and parity with web
Deliverables

D8.1: Mobile app MVP (iOS + Android).

WP 9: Document Chat and Multi-Document Queries

Start date: 2025-12-15 End date: 2026-01-31

Leader: Ata Oğuz Members
involved:

Emir Görgülü, Ata
Soykal

Objectives: Deliver mobile clients and a user-initiated ingestion path

without background monitoring.
Tasks:

Task 9.1 Document chunking & embeddings.
Task 9.2 Multi-document retrieval.
Task 9.3 Chat interface over user vault.
Task 9.4 Answer grounding to source text.

Deliverables
D9.1: Working RAG-based document query system.

WP 10: Custom Model Prototype

Start date: 2026-12-10 End date: 2026-01-20

Leader: Edip Emre Dönger Members
involved:

Ata Oğuz

Objectives: Train a preliminary risk classifier to reduce reliance on external
APIs.

Tasks:
Task 10.1 Find suitable datasets.
Task 10.2 Train a local model for one subtask.

Deliverables
D10.1: Local model prototype.

WP 11: Document Comparison & Vault Enhancements

Start date: 2026-01-10 End date: 2026-02-15

Leader: Ata Oğuz Members
involved:

Can Polat Bülbül, Ata
Soykal, Emir Görgülü

Objectives: Enable long-term usefulness and differentiation.

Tasks:
Task 11.1 Agreement version grouping.
Task 11.2 Text / clause-level comparison.
Task 11.3 Vault metadata, tags, search.

Deliverables

D11.1: Vault v2.

WP 12: Browser Extension & Automatic ToS Detection

Start date: 2026-02-01 End date: 2026-03-15

52

Leader: Edip Emre Dönger Members
involved:

Ata Soykal, Can
Polat Bülbül

Objectives: Support pre-acceptance analysis flows.

Tasks:

Task 12.1 Browser extension for page extraction and seamless analysis.
Task 12.2 Risk badge + deep link.
Task 12.3 Android ToS screen detection & prompt.
Deliverables

D12.1: Browser extension prototype.
D12.2: Mobile ToS detection demo.

WP 13: Domain Generalization Beyond ToS

Start date: 2026-02-01 End date: 2026-04-15

Leader: Emir Görgülü Members
involved:

Edip Emre Dönger,
Ata Soykal

Objectives: Make the system usable in a wider range of contract domains.

Tasks:

Task 13.1 Extend taxonomy to new domains (e.g. employment, consumer).
Task 13.2 Test extraction robustness across domains.
Task 13.3 Update prompts / models accordingly.
Deliverables

D13.1: Multi-domain analysis report.
D13.2: Updated schema & taxonomy.

WP 14: Automatic Version Tracking & Change Detection

Start date: 2026-03-15 End date: 2026-04-15

Leader: Ata Soykal Members
involved:

Ata Oğuz, Can Polat
Bülbül

Objectives: Track evolving agreements automatically.

Tasks:

Task 13.1 Detect new versions.
Task 13.2 Clause-level diffing.
Task 13.3 Change significance summaries.

Deliverables
D13.1: Version tracking & change detection module.

WP 15: Legal Grounding & Compliance Checking

Start date: 2026-03-15 End date: 2026-04-25

Leader: Edip Emre Dönger Members
involved:

All Members

Objectives: Ground analysis in real regulations and user rights.

Tasks:
Task 13.1 Select jurisdictions (e.g. GDPR, EU consumer law).
Task 13.2 Map clauses to rights and compliance issues.
Task 13.3 Update prompts / models accordingly.

Deliverables

D13.1: Legal ruleset documentation

WP 16: Testing, QA, Final Demo, Final Report Package

Start date: 2026-04-15 End date: 2026-05-05

53

Leader: Can Polat Bülbül Members
involved:

All Members

Objectives: Finalize reliability, testability, and documentation required for
CS492.

Tasks:
Task 14.1 Build a requirements traceability matrix (FR → tests → results).
Task 14.2 End-to-end tests for golden flows across web + mobile (+
extension if included).
Task 14.3 Security/privacy checklist verification (consent logs, deletion,
access control).
Task 14.4 Final demo script + final report writing + final architecture
diagrams.

Deliverables
D14.1: Final demo build
D14.2: Test report
D14.3: Final documentation

4.4 Ensuring Proper Teamwork

We followed an adapted Scrum workflow that fits our course schedule and the
iterative nature of Agreemind. We worked in short 1–2 week sprints, re-
prioritizing tasks as requirements and implementation constraints became
clearer (e.g., focusing first on a web demo and core backend pipeline). We
tracked all tasks in Jira (backlog, assignees, sprint goals, and status) so
individual contributions and progress were visible and reviewable.

We coordinated through regular meetings and daily communication on
WhatsApp/Discord to resolve potential problems quickly. Key decisions (scope
changes, architecture choices, and milestone definitions) were summarized
back into Jira to keep an auditable record. Work was organized into work
packages with rotating leadership.

54

Overall everyone contributed to every part of the project, we did not have
specific limits for who did which part, we asked each other for help whenever
we needed and everyone contributed to every single part of the project.

4.5 Ethics and Professional Responsibilities

The development of Agreemind is governed by a strict ethical framework
prioritizing user sovereignty, transparency, and professional integrity. We
explicitly define the system as an informational tool rather than a legal advisor
to prevent dangerous over-reliance, ensuring all risk assessments are clearly
labeled as probabilistic. To protect sensitive legal data, we adhere to "Privacy
by Design" principles, enforcing end-to-end encryption and ensuring that no
user-uploaded documents are used to train global models without explicit opt-
in. Furthermore, our team actively mitigates algorithmic bias through regular
model validation and transparency features that explain the rationale behind
risk flags, while adhering to ACM and IEEE codes of ethics to maintain honest,
responsible engineering practices throughout the project lifecycle.

4.6 Planning for New Knowledge and Learning Strategies

The development of Agreemind requires our team to bridge the gap between
advanced software engineering and complex legal theory. To achieve our
objectives, we identify specific technical knowledge gaps and implement a
targeted learning strategy.

● Legal NLP & Advanced Models: To handle the unique complexity of
legal texts, we conduct research on specialized architectures capable of
processing long documents without losing context. We also study
abstractive summarization techniques through academic literature and
documentation, and we fine-tune models on open legal datasets to
ensure accurate simplification of clauses.

● Retrieval-Augmented Generation (RAG): Implementing the "Personal
Vault" requires mastering the RAG paradigm. We focus on learning
semantic search techniques and vector database management. This
allows us to understand optimal text-chunking strategies specifically for
legal queries.

● Cross-Platform & Extension Architecture: Adopting a unified
codebase for web and mobile requires learning to bridge native mobile
modules with React Native. Additionally, the browser extension
demands a study of modern browser standards to create a solution that
complies with strict security restrictions on background processes.

● Security & Encryption: Given the sensitivity of user contracts, we
engage in self-directed learning regarding client-side encryption and
authentication. We review industry security guidelines to ensure our
architecture meets the highest standards for encryption at rest and in
transit.

55

5 Glossary

Agreemind: The proposed consumer-facing legal-document assistant that
summarizes agreements, highlights risks, and helps users track obligations
without providing legal advice.

Agreement: A legal text the user uploads or shares (e.g., Terms of Service,
Privacy Policy, rental/subscription contract).

Clause: A meaningful segment of an agreement (sentence/paragraph/section)
that expresses a rule, right, limitation, or obligation.

Risk Flag: A detected clause category that may be unfavorable to the user
(e.g., data sharing, auto-renewal, unilateral change, arbitration).

Plain-Language Summary: A simplified explanation of an agreement or
clause written for non-expert users.

Obligation: An action the user must do (or avoid) according to the agreement
(e.g., payment, notice submission, compliance requirement).

Deadline / Notice Period: A time constraint extracted from the agreement
(e.g., cancellation window, renewal date, “within 30 days”).

Personal Vault: A secure personal repository where a user’s processed
agreements, reports, and metadata are stored for later search and comparison.

Version Comparison: A feature that identifies and presents changes between
two versions of the same agreement (“what changed?”).

Analysis Pipeline: The backend processing steps applied to an agreement
(ingestion → text extraction → chunking → retrieval/classification →
summarization → report).

AnalysisJob: A backend job that represents one analysis request from a user

and its processing state (queued/running/completed/failed).

ConsentRecord: A stored record that the user explicitly permitted an

agreement to be processed (especially important if external APIs are used).

RAG (Retrieval-Augmented Generation): A method where the system

retrieves relevant text passages and constrains the LLM to answer using that
context.

Embedding: A numeric vector representation of text used to support semantic
search and retrieval in the vault.

Vector Store: A database/index optimized for similarity search over
embeddings (used for vault querying and context retrieval).

HNSW: A graph-based approximate nearest neighbor indexing method
commonly used for fast vector similarity search.

LLM (Large Language Model): A model used to generate
summaries/explanations; in your system it must be constrained to informational
output (not legal advice).

Custom Model: A smaller model you train/fine-tune for a specific subtask (e.g.,

risk classification or date extraction) to reduce cost and dependency on external
APIs.

56

NER (Named Entity Recognition): A technique to detect structured entities in
text (e.g., dates, organizations, money amounts).

Share Sheet / Share Intent: Mobile OS functionality that lets the user share a
webpage/text into Agreemind for on-demand analysis (instead of background
monitoring).

Privacy by Design: Designing the system to minimize data collection, enforce

access control, and prevent model training on user data without explicit opt-in.

GDPR / Right to be Forgotten: Data protection requirements that include user

deletion/export rights and limits on data retention/processing.

57

6 References

[1] Ironclad – AI-powered Contract Lifecycle Management Software (2025).

Retrieved from https://ironcladapp.com/product/ai-based-contract-

management

[2] Kira Systems – AI-powered Contract Analysis Software (2025). Retrieved

from https://kira.ai/solutions/legal-workflow

[3] Luminance – Legal-Grade AI Contract & Document Review Software

(2025). Retrieved from https://luminance.com/solutions/legal/

[4] ToS;DR – Crowd-sourced ToS & Privacy Policy Ratings (2025). Retrieved

from https://tosdr.org

[5] Open Terms Archive – Public Archive of Online Terms & Conditions

(2025). Retrieved from https://opentermsarchive.org

[6] Termzy AI – Real-time ToS Detection Software (2025). Retrieved from

https://www.termzyai.com/#features

[7] LegalZoom – Online Legal Services & Legal Advice (2025). Retrieved from

https://www.legalzoom.com/

[8] Rocket Lawyer – Legal Documents, Advice & Lawyers (2025). Retrieved

from https://www.rocketlawyer.com/

https://ironcladapp.com/?utm_source=chatgpt.com
https://kira.ai/
https://luminance.com/
https://tosdr.org/?utm_source=chatgpt.com
https://www.termzyai.com/#features
https://www.legalzoom.com/
https://www.rocketlawyer.com/

	1 Introduction
	2 Current System
	3 Proposed System
	3.1 Overview
	3.2 Functional Requirements
	3.2.1 Document Ingestion & Preparation
	3.2.2 Contract Analysis
	3.2.3 Risk, Obligations & Deadlines
	3.2.4 Personal Vault & Querying
	3.2.5 On-Demand Proactive Protection
	3.2.6 Version Tracking & Change Detection
	3.2.7 Contract Comparison
	3.2.8 Rights Enforcer
	3.2.9 Alerts & Reminders

	3.3 Non-functional Requirements
	3.3.1 Usability
	3.3.2 Portability
	3.3.3 Maintainability
	3.3.4 Reliability
	3.3.5 Scalability
	3.3.6 Privacy

	3.4 Pseudo Requirements
	3.5 System Models
	3.5.1 Scenarios
	3.5.2 Use-Case Models
	3.5.3 Object and Class Model
	3.5.4 Dynamic Models
	3.5.5 User Interface

	4 Other Analysis Elements
	4.1 Consideration of Various Factors in Engineering Design
	4.1.1 Constraints
	4.1.2 Consideration of Global, Cultural, Social, Environmental, and Economic Factors in Engineering Design
	4.1.3 Standards

	4.2 Risks and Alternatives
	4.3 Project Plan
	4.4 Ensuring Proper Teamwork
	4.5 Ethics and Professional Responsibilities
	4.6 Planning for New Knowledge and Learning Strategies

	5 Glossary
	6 References

