Bilkent University
Department of Computer Engineering

CS 491 Senior Design Project |
T2516
Agreemind

Analysis and Requirements Report

Ata Oguz, 22202453, ata.oguz@ug.bilkent.edu.tr
Ata Soykal, 22202290, ata.soykal@ug.bilkent.edu.tr
Can Polat Bulbul, 22203369, polat.bulbul@ug.bilkent.edu.tr
Edip Emre D6nger, 22201531, emre.donger@ug.bilkent.edu.tr
Emir Gorgulia, 22202834, emir.gorgulu@ug.bilkent.edu.tr

Supervisor: Hamdi Dibeklioglu
Course Instructors: Mert Bicakgl, llker Burak Kurt

Contents

1 Introduction
2 Current System
3 Proposed System
3.1 Overview
3.2 Functional Requirements
3.2.1 Document Ingestion & Preparation
3.2.2 Contract Analysis
3.2.3 Risk, Obligations & Deadlines
3.2.4 Personal Vault & Querying
3.2.5 On-Demand Proactive Protection
3.2.6 Version Tracking & Change Detection
3.2.7 Contract Comparison
3.2.8 Rights Enforcer
3.2.9 Alerts & Reminders
3.3 Non-functional Requirements
3.3.1 Usability
3.3.2 Portability
3.3.3 Maintainability
3.3.4 Reliability
3.3.5 Scalability
3.3.6 Privacy
3.4 Pseudo Requirements
3.5 System Models
3.5.1 Scenarios
3.5.2 Use-Case Models
3.5.3 Object and Class Model
3.5.4 Dynamic Models
3.5.5 User Interface
4 Other Analysis Elements
4.1 Consideration of Various Factors in Engineering Design
4.1.1 Constraints

© © © 00000 WO ~NN~NOOO”O O OO W W

A DA OWODNDNMNDNPFPRFRPEPRERPE
P PNMNNPFPOPRFPPFPOODO

41

4.1.2 Consideration of Global, Cultural, Social, Environmental, and Economic

Factors in Engineering Design
4.1.3 Standards
4.2 Risks and Alternatives
4.3 Project Plan
4.4 Ensuring Proper Teamwork
4.5 Ethics and Professional Responsibilities
4.6 Planning for New Knowledge and Learning Strategies
5 Glossary
6 References

44
46
46
48
53
54
54
55
57

1 Introduction

For an average person, navigating today's agreements, from digital Terms of
Service to rental agreements, has become an extremely difficult task. Critical
obligations are frequently covered by dense legal jargon, which causes users
to unintentionally accept restrictive conditions, ignore significant rights, or miss
crucial deadlines. By acting as a personal Al companion to assist people in
comprehending, monitoring, and carrying out their agreements, Agreemind
minimizes this vulnerability. Agreemind, in contrast to corporate tools, is
designed for the individual signer and uses sophisticated Natural Language
Processing (NLP) to convert complicated clauses into understandable,
straightforward explanations.

The system acts as a protective layer, automatically detecting risk patterns,
hidden obligations, and aggressive terms before a user commits. Accessible
via multiple platforms, Agreemind supports the entire contract lifecycle. The
Browser Extension offers real-time protection by analyzing online terms prior to
acceptance, while the Personal Vault securely organizes existing documents.

Beyond simple analysis, Agreemind empowers active management through the
Rights Enforcer, which highlights actionable rights (like data access or
cancellation) and generates draft templates to help users exercise them.
Additional features include a Comparison Service to track version changes and
a Notification Service for upcoming renewals. By centralizing document storage
and providing actionable Al-driven insights, Agreemind shifts the user’s role
from passive acceptance to informed control, ensuring they remain protected
throughout the life of an agreement.

2 Current System

The current legal technology environment is overwhelmingly leaned towards
enterprise solutions, supplying primarily to law firms and corporations with
complex contract lifecycle management needs. While these tools are powerful,
they create a significant void in the consumer market, leaving individuals to
navigate complex agreements from software Terms of Service to rental leases,
without adequate resources or assistance. The default approach for most
people is a manual, "sign-and-forget" methodology, which is neither feasible
nor safe given the density of legal language and the frequency of unnotified
updates. Unlike corporate teams equipped with sophisticated Al platforms, the
average user lacks accessible tools to interpret obligations or track changes,
often resulting in the passive acceptance of unfavorable terms.

Agreemind addresses this disparity by positioning itself as a "Personal Legal
Companion" dedicated to the individual signer rather than the corporate drafter.
By integrating comprehensive analysis, storage, and enforcement tools,
Agreemind shifts the user from a state of vulnerability to one of active, informed
management. The following table outlines the limitations of existing solutions
and how Agreemind distinguishes itself:

Table 1: Current Systems and Agreemind’s Differentiation.

Category & Examples

Description and Agreemind’s Differentiation

Enterprise Legal Al

(Ironclad, Kira Systems,
Luminance)

These systems employ sophisticated machine
learning models to automate clause detection and
streamline the review process. They are
engineered exclusively for corporate legal
departments to optimize compliance workflows and
manage high-volume commercial contracts [1], [2],

[3].

Differentiation:

Such platforms are typically cost-prohibitive and
too intricate for the average consumer. Agreemind
is specifically designed for the "non-expert reader,”
focusing on translating complex legal terminology
into plain language and providing an accessible
interface rather than a dense corporate dashboard.

Crowdsourced
Transparency Project

(ToS;DR, Open Terms
Archive):

These initiatives rely on community contributions to
grade and summarize the Terms of Service for
popular websites [4], [5].

Differentiation:

These platforms suffer from limited coverage and
cannot handle arbitrary personal documents (e.qg.,
a specific landlord’s lease or a freelance NDA).
Agreemind utilizes Al to analyze any document
uploaded by the wuser, providing immediate,
personalized analysis rather than relying on a pre-
existing database.

Real-time ToS Detector

(Termzy Al)

These tools generally function as browser
extensions, designed to scan and flag terms and
conditions on websites at the exact moment of user
interaction [6].

Differentiation:

While effective during browsing, these tools lack
post-acceptance support. Agreemind distinguishes
itself by managing the full agreement lifecycle;
features like the "Personal Vault" and "Rights
Enforcer" allow users to archive contracts, track
updates over time, and draft legal requests long
after the initial signing.

General-Purpose Al
Chatbots

These large language models allow users to paste
text or upload documents and ask for summaries
or explanations. They are widely accessible and
can handle general queries about text.

(ChatGPT, Gemini,
Claude) Differentiation:

These tools have significant privacy risks (data
usage for training), lack specific legal safeguards,
and do not provide a secure "Personal Vault" for
long-term storage. Agreemind is a purpose-built
environment that ensures data privacy, tracks
deadlines, and enforces rights long after the chat
session ends.

These platforms function as a bridge between
Online Legal Services | personal legal work and hiring a traditional law firm.
Their primary business model revolves around
(LegalZoom, Rocket | document assembly and human attorney
Lawyer) connection. Users can access libraries of pre-
drafted templates (such as wills, LLC formation
documents, or rental leases) and customize them
through a questionnaire-based interface [7], [8].

Differentiation:

These services are often expensive and slow,
relying on human intervention or generic templates.
Agreemind provides rapid, automated analysis for
contracts at a fraction of the cost, empowering
users to understand documents without waiting for
a consultation.

3 Proposed System

3.1 Overview

Agreemind is a consumer-facing legal assistance platform that helps
everyday users understand and manage online Terms of Service, Privacy
Policies, and common consumer contracts by providing plain-language
explanations, risk-focused highlights, and deadline/obligation extraction.

The system accepts agreements through multiple entry points (mobile
app, web interface, and a browser extension that can forward the current page),
then processes the content through a centralized backend pipeline that parses
documents, identifies clause boundaries, generates summaries, flags
potentially risky terms (e.g., data sharing, auto-renewal, arbitration), and
extracts key dates for reminders.

Agreemind is designed to support informed decision-making rather than
replace legal professionals; therefore, outputs are presented as informational
guidance with clear uncertainty and source traceability to the original text.
Users can optionally store agreements in a personal vault for later search and
comparison, with privacy and security controls applied across storage and any
interactions with external Al services.

3.2 Functional Requirements
3.2.1 Document Ingestion & Preparation

e The system must allow users to input agreements through various
channels to ensure ease of access. This includes standard file uploads
(PDF, DOCX, text files), direct text pasting, importing from HTML pages,
and sharing directly from mobile devices.

e Upon ingestion, the system must be capable of performing Optical
Character Recognition (OCR) on scanned documents or images to
convert them into machine-readable text.

e The system must parse the raw text to identify and segment the content
into a structured format. This involves detecting and tagging logical units
such as clauses, section headings, numbering, and spatial positioning
to prepare the document for analysis.

3.2.2 Contract Analysis

e The system shall automatically generate a high-level, abstractive
summary of the entire agreement. This summary must translate complex
legal terminology into plain language that is easily understandable by a
non-expert reader.

e The system must categorize each segmented clause into predefined
legal categories, such as renewal terms, fee structures, liability
limitations, dispute resolution mechanisms, and privacy policies.

e The system shall analyze clauses to detect potentially unfair, risky, or
aggressive terms. It must assign a risk level to these clauses using a
color-coded representation (e.g., Green, Yellow, Red) to visually alert
the user to danger zones.

e For every flagged risk, the system must provide a brief explanation
describing specifically why the clause is considered risky in that context.

e The system shall cross-reference clauses against a knowledge base of
domain-specific and jurisdiction-specific rules to identify likely
compliance issues or violations of consumer protection laws.

3.2.3 Risk, Obligations & Deadlines

e The system must detect specific risk patterns within the text, including
general red flags (e.g., unilateral modification clauses, forced arbitration)
and domain-specific risks tailored to the document type (e.g., a rental
lease vs. a software license).

e The system shall identify specific actions required of the user, such as
cancelling a service, opting out of data sharing, or filing a claim. It must
further extract the necessary details to perform these actions, including
the communication channel (email, web portal), contact information, and
the responsible actor.

The system must identify time-sensitive elements within the text, such
as "within 14 days" or "before renewal.” It shall convert these relative or
absolute references into structured, calendar-ready deadline objects.

3.2.4 Personal Vault & Querying

The system shall maintain a secure "Personal Vault" where users can
save, organize, and retrieve their analyzed agreements. This vault must
act as a central repository for the user's legal history.

Users shall be able to query their stored agreements through a natural-
language chatbot.

Users shall be able to search through all stored agreements using
natural language (multi-document query).

3.2.5 On-Demand Proactive Protection

The system shall provide a native "Share Extension” for both iOS and
Android mobile platforms. This integration allows users to manually send
content, such as PDF files, website URLS, or selected text, directly from
third-party applications (e.g., Chrome, Safari, Gmail, Drive) to
Agreemind for immediate analysis.

Upon selecting "Agreemind" from the system share menu, the mobile
app shall automatically launch, ingest the shared content, and present
the risk analysis summary without requiring the user to manually save
and upload files.

If a user shares a URL (e.g., a link to a Terms of Service page), the
system shall automatically fetch the full HTML content of that page,
parse the legal text, and generate a report.

If the device is offline when content is shared, the system shall queue
the request and process the analysis once connectivity is restored.

3.2.6 Version Tracking & Change Detection

The system shall track and store multiple versions of the same
agreement over time, maintaining a complete history of the contract's
lifecycle.

When a new version of a stored agreement is detected or uploaded, the
system must automatically compare it against the previous version. It
shall highlight specific clauses that have been added, removed, or
modified.

The system shall provide a side-by-side comparison view that includes
generated summaries explaining the practical significance of the
detected changes, rather than just showing raw text diffs.

3.2.7 Contract Comparison

e Users must be able to select two separate contracts or drafts and
compare them side-by-side within the interface.

e The system shall align semantically similar clauses between the two
documents (even if they are in different orders) and highlight the
differences in text, identified risks, obligations, and deadlines.

3.2.8 Rights Enforcer

e The system must actively identify which legal rights a user is entitled to
exercise based on the contract's text and applicable regulations (e.g.,
GDPR rights, consumer cancellation rights).

e For identified actionable rights, the system shall be capable of
generating formal draft requests, such as letters for data access,
contract termination, or opting out of specific clauses.

e The system shall automatically locate and present the relevant contact
channels extracted from the documents such as email addresses, URL
forms, or physical addresses, to facilitate the sending of these requests.

3.2.9 Alerts & Reminders

e The system must continuously monitor stored agreements for upcoming
critical events, including renewal dates, cancellation deadlines, claim
windows, and payment due dates.

e Based on the extracted deadlines, the system shall schedule and
dispatch timely notifications to the user. These reminders must be sent
sufficiently in advance to allow the user to take necessary action before
the opportunity expires.

3.3 Non-functional Requirements
3.3.1 Usability

e The user interface shall present summaries, clause flags, and risks in
clear and readable formats understandable by non-experts.

e Color-coded indicators for risk levels shall follow accessibility guidelines.

e The Ul for the mobile app should be intuitive and easy to use.

e The application shall support "Dark Mode" and dynamic text sizing to
accommodate user preferences and reduce eye strain during reading.

3.3.2 Portability

e The system shall run on major modern browsers and mobile operating
systems.

The backend shall be deployable on major cloud platforms without major
modification.

The browser extension shall support Chromium-based browsers and
Firefox, subject to platform API limits.

The backend services shall be containerized (Docker) to ensure
consistent deployment across different cloud providers (AWS, Azure,
GCP) or on-premise servers.

The mobile application shall be compatible with Android 12+ and iOS
15+, covering the active mobile users.

3.3.3 Maintainability

The system shall use a modular architecture so that core analysis
components (clause classification, risk detection, obligation extraction)
are independent from domain-specific logic.

New domains, rule sets, or knowledge bases shall be addable as
separate, self-contained modules without modifying core code.

Regulatory or industry-specific rules shall be stored in external,
versioned configuration files so they can be updated or expanded easily.

The system shall expose clear internal interfaces that define how domain
modules interact with the core engine, enabling low coupling and simple
future extension.

Updating or replacing domain modules, rules, or knowledge bases shall
not require system downtime.

Code shall be consistently structured and documented to support long-
term maintainability.

3.3.4 Reliability
The system shall maintain high availability.

The vault and document records shall not be lost due to server errors;
periodic backups must be maintained.

Notification services shall reliably trigger reminders before deadlines.

The system shall implement a Mean Time to Recovery (MTTR) in the
event of a critical service crash.

The notification service shall employ a retry mechanism to ensure
delivery of critical deadline reminders in case of temporary network
failure.

3.3.5 Scalability

The analysis pipeline shall scale horizontally to handle multiple
simultaneous document uploads.

The system shall support growth in the number of users and stored
documents without significant performance degradation.

The vector store and search mechanisms shall support large embedding
collections efficiently.

3.3.6 Privacy

Users shall retain full ownership of uploaded contracts and analysis
results.

No contract text or user-generated data shall be used for model training
or external sharing without explicit opt-in.

The system shall provide mechanisms for deleting individual documents
from the vault and deleting the entire user account and all associated
data.

The system shall comply with applicable data protection laws.

All personal data and document text shall be encrypted.

The system shall implement a logical separation of data, ensuring that a
user's document embeddings in the vector store are isolated and cannot
be queried by other users.

3.4 Pseudo Requirements

Agreemind will target users across multiple platforms, allowing access
through a Web App, Mobile App, and Browser Extension to ensure
contract analysis is available on any device.

Git and GitHub will be used for version control

Jira will be used for issue tracking and managing the project
PostgreSQL will be used as the primary relational database to store
structured analysis outputs, clause metadata, user records, and
detected deadlines.

Python will serve as the primary programming language for the backend
and the core processing layer, chosen for its extensive support for NLP
libraries and Al integration.

FastAPI will be used to develop the REST API, ensuring stateless and
scalable communication between the backend and the web, mobile, and
extension clients.

10

React Native will be utilized to construct the Web App interface,
providing a responsive and user-friendly dashboard for managing the
"Personal Vault".

PyTorch and the Hugging Face Transformers library will be used to
implement the Abstractive Summarization and Risk Detection modules
using BERT or GPT variants.

LangChain (or custom pipelines) will be used to orchestrate the
Retrieval-Augmented Generation (RAG) flows, connecting the analysis
modules with the LLM for the "Chat/Query Service".

AWS S3 (or compatible Object Store) will be used to securely store the
original uploaded documents (PDF, DOCX) in their raw format.

Docker will be used to containerize the application services, ensuring
consistency across development and production environments.

Zoom will be used for synchronous meetings and real-time project
discussions, while WhatsApp will be used for asynchronous
communication.

Automated Clause Classifiers will be trained to detect potentially unfair
terms and assign risk levels (color-coded indicators) based on labeled
legal datasets.

Named Entity Recognition (NER) models will be used to extract time-
sensitive elements and specific entities, such as renewal dates and
cancellation windows, to structure actionable deadlines.

Chromium and Firefox APIs will be utilized to construct the browser
extension, enabling real-time, on-page analysis of online agreements
before acceptance.

3.5 System Models

3.5.1 Scenarios

Scenario 1: Sign Up

Primary Actor: End User

Supporting Actors: Agreemind Mobile/Web Ul, Backend API, Authentication
Serviced

Entry Condition: User is on the Sign Up screen and is not authenticated.

Exit Condition (Success): User account is created; user is authenticated
and redirected to the home/dashboard screen.

Main Flow:

1.
2.

User selects Sign Up.

System displays a registration form (e.g., email, password, confirm
password).

User submits the form.

11

Backend validates input (email format, password policy, uniqueness of
email).

Backend creates the user account and issues an authentication
token/session.

Client stores the session securely and navigates the user to the main
app screen.

Alternative/Exception Flows:

Al (Email Already Registered): System informs the user and offers
Log In or Reset Password.

A2 (Weak Password): System rejects the password and displays the
password requirements.

A3 (Network/API Error): System shows a retry message; no account
Is created unless confirmation is received.

Scenario 2: Log In

Primary Actor: End User

Supporting Actors: Agreemind Mobile/Web Ul, Backend API, Authentication
Service

Entry Condition: User is on the Log In screen and is not authenticated.

Exit Condition (Success): User is authenticated and can access the vault
and saved reports.

Main Flow:

1.

2
3.
4

User selects Log In.

. User enters email and password.

Client submits credentials to backend.

. Backend validates credentials and issues an authentication

token/session.

Client stores the session securely and redirects to the home/dashboard
screen.

Alternative/Exception Flows:

Al (Invalid Credentials): System displays an error message and
allows retry without revealing which field was incorrect.

A2 (Account Locked/Rate Limited): After repeated failures, system
temporarily blocks attempts and informs the user.

A3 (Session Expired): If an existing session is invalid/expired, system
requests login again.

Scenario 3: Log Out

12

Primary Actor: End User

Supporting Actors: Agreemind Ul, Backend API (optional), Authentication
Service

Entry Condition: User is authenticated and is in the app.

Exit Condition (Success): Session is cleared on the client (and invalidated
server-side if applicable); user returns to the login screen.

Main Flow:
1. User selects Log Out from settings/menu.
2. Client clears local session tokens securely.
3. Client navigates to the Log In screen.
4. Backend invalidates the token/session.
Alternative/Exception Flows:

e Al (Offline Logout): Client still clears local session; server invalidation
occurs on next connection.

Scenario 4: Forgot Password
Primary Actor: End User

Supporting Actors: Agreemind Mobile/Web Ul, Backend API, Authentication
Service, Email Service

Entry Condition: User is on the Log In screen and cannot access their
account.

Exit Condition (Success): User sets a new password and can log in
successfully.

Main Flow:

User selects Forgot Password on the Log In screen.

System prompts for the account email address.

User enters email and submits.

Backend verifies that the email exists (without revealing account

existence explicitly, if you choose to prevent enumeration).

Backend generates a time-limited reset token and sends a reset

link/code to the email address.

6. User opens the reset link (or enters the code) and sets a new
password.

7. Backend validates the new password, updates credentials, and
confirms success.

8. User logs in with the new password.

PN E

o1

Alternative/Exception Flows:

13

Al (Invalid/Expired Token): System rejects the reset attempt and
asks the user to request a new reset email.

A2 (Weak Password): System rejects the password and shows
password policy requirements.

A3 (Email Delivery Failure): System shows a retry option and
suggests checking spam/junk folders.

A4 (Rate Limiting): System limits reset requests to prevent abuse and
informs the user to wait before retrying.

Scenario 5: Upload an Agreement PDF and Generate an Analysis Report

Primary Actor: End User

Supporting Actors: Agreemind Mobile/Web Ul, Backend API, Document
Processing Service, LLM Service

Entry Condition: User is on the “New Analysis / Upload” screen; user is
authenticated (or using a guest mode if supported).

Exit Condition (Success): A new Analysis Report is created and shown to the
user; the original document is stored temporarily or in the vault depending on
user choice.

Main Flow:

1.
2.

User selects Upload PDF and chooses a file from device storage.
Client uploads the file to the backend.

Backend validates file type/size and creates an “Analysis Job” with
status Queued.

Document Processing extracts text (OCR if needed) and normalizes
formatting.

Clause segmentation runs and produces clause boundaries.

The LLM pipeline generates: (a) plain-language summary, (b) risk flags
per clause, (c) extracted dates/obligations.

Backend stores the analysis results and marks the job Completed.

Client displays the report: summary + risk categories + highlighted
clauses + extracted dates.

Alternative/Exception Flows:

Al (Unsupported File): If the file is not a supported type, backend
rejects it and client shows an error with accepted formats.

A2 (OCR Failure/Low Confidence): If OCR fails or confidence is low,
system returns partial results and asks the user to re-upload a better
scan or paste text.

14

e A3 (LLM Unavailable): If the LLM call fails, system returns extracted
text + segmentation (if available) and marks summary/risk fields as
“Unavailable.”

Scenario 6: Paste Agreement Text and Generate an Analysis Report
Primary Actor: End User

Supporting Actors: Agreemind Ul, Backend API, LLM Service

Entry Condition: User is on “Paste Text” screen.

Exit Condition (Success): Report shown with summary, risk flags, and
dates.

Main Flow:
1. User pastes agreement text into the text input area.

2. Client performs basic validation (non-empty, length limits) and submits
to backend.

3. Backend stores the raw text as a new Analysis Job.

4. Backend segments clauses and runs summarization + risk detection +
date extraction.

5. Client displays the resulting report with traceability (each highlight
maps to source text).

Alternative/Exception Flows:

e Al (Text Too Long): System prompts user to shorten or upload as
PDF; optionally supports chunking if implemented.

e A2 (Non-English Detected): System warns that MVP is English-only
and may produce unreliable output.

Scenario 7: Use Browser Extension to Analyze the Current Webpage
Primary Actor: End User

Supporting Actors: Browser Extension, Backend API, Agreemind
Web/Mobile App

Entry Condition: User is viewing a webpage likely containing ToS/Privacy
Policy; extension is installed and enabled.

Exit Condition (Success): A report is created and a badge/result is shown in
the extension popup, with a link to open the full report in the app.

Main Flow:
1. User clicks the extension icon on the current page.

2. Extension extracts page content (e.g., visible text or DOM text) and
captures the page URL.

15

3. Extension sends text + URL to backend to start an Analysis Job.
4. Backend processes text (segmentation + summary + risks + dates).

5. Extension shows a risk badge (e.g., low/medium/high) and a link to
open the detailed report.

Alternative/Exception Flows:

e Al (Extraction Blocked): If the page blocks scripts or extraction fails,
extension prompts user to copy/paste text into the app.

e A2 (Very Large Page): Extension sends only relevant sections or
truncates with warning, or instructs user to open in-app capture.

Scenario 8: Review Risk Highlights and Inspect Supporting Evidence
Primary Actor: End User

Supporting Actors: Agreemind Ul, Backend API

Entry Condition: A completed report exists and is opened.

Exit Condition (Success): User views risk highlights and understands why
they were flagged.

Main Flow:
1. User opens an Analysis Report.

2. System displays overall summary and risk categories (e.g., data
sharing, auto-renewal).

3. User selects a risk category to filter highlights.

4. System scrolls to each relevant clause and highlights the exact text
span.

5. User taps “Why flagged?” to view a short explanation and (optionally) a
confidence indicator.

Alternative/Exception Flows:

e Al (Low Confidence): If confidence is low, the Ul shows a caution
label and encourages manual review.

Scenario 9: Extract Dates/Obligations and Set a Reminder
Primary Actor: End User

Supporting Actors: Agreemind Ul, Backend API, Notification/Reminder
Service

Entry Condition: Report contains extracted dates/obligations.

Exit Condition (Success): A reminder is scheduled and visible in the user’s
reminder list.

16

Main Flow:
1. User opens “Key Dates & Obligations” in the report.

2. System lists extracted items (e.g., cancellation window, renewal date)
with source clause links.

3. User selects an item and taps “Set Reminder.”

4. User chooses reminder time (e.g., 7 days before).

5. System stores the reminder and confirms success.
Alternative/Exception Flows:

e Al (Ambiguous Date): If the date is uncertain, system labels it as
estimated and asks user to confirm/edit before saving.

Scenario 10: Save an Agreement to the Vault and Search Later

Primary Actor: End User
Supporting Actors: Agreemind Ul, Backend API, Storage Service

Entry Condition: User has at least one completed report.

Exit Condition (Success): Agreement is saved and appears in the vault;
search returns relevant results.

Main Flow:
1. User chooses “Save to Vault” from the report screen.
2. User optionally enters metadata (service name, category, tags).
3. System stores the agreement + report under the user account.
4. Later, user opens Vault and searches by keyword/tag/service name.
5. System displays matching agreements and user opens one report.
Alternative/Exception Flows:

e Al (Storage Limit Reached): System warns user and offers
deletion/upgrade (if applicable) or blocks save.

Scenario 11: Share a Webpage to Agreemind from a Mobile Device
Primary Actor: End User

Supporting Actors: Mobile OS Share Sheet (i0S/Android), Agreemind Mobile
App, Backend API, Document Processing Service, LLM Service

Entry Condition: User is viewing a webpage (e.g., ToS/Privacy Policy) in a
mobile browser or another app; Agreemind is installed and registered as a
share target.

Exit Condition (Success): A new Analysis Report is created and displayed in
Agreemind.

17

Main Flow:

1.
2.
3.

User taps Share on the current page/app.
User selects Agreemind from the share sheet.

The OS launches Agreemind and passes shared content (typically a
URL, and optionally selected text if available).

Agreemind shows an “Import from Share” screen and asks the user to
confirm analysis.

Agreemind sends the URL (and any included text) to the backend to
create an Analysis Job.

Backend retrieves and/or processes the content:

o If the backend can fetch the URL content, it extracts readable
text.

o If only text was shared, backend analyzes the provided text
directly.

Backend runs segmentation + summarization + risk detection + date
extraction.

Agreemind displays the completed report and optionally offers “Save to
Vault.”

Alternative/Exception Flows:

Al (URL Fetch Not Allowed / Paywalled / Blocked): App prompts
the user to paste the text manually or open the page in a supported
browser mode.

A2 (Non-English Detected): System warns English-only limitation and
proceeds only if user confirms.

A3 (Very Long Content): System truncates or analyzes the most
relevant sections (with a warning), or requests the user to upload a
PDF instead.

A4 (No Network): The app queues the analysis request and submits
when connectivity returns (if you implement offline queueing);
otherwise it asks user to retry later.

Scenario 12: Compare Two Versions of an Agreement

Primary Actor: End User

Supporting Actors: Agreemind Ul, Backend API, Comparison Service

Entry Condition: User has two agreements (or two versions) available.

Exit Condition (Success): A “What changed?” view is shown with
added/removed/modified clauses.

18

Main Flow:

1. User selects “Compare Versions” and chooses Version A and Version
B.

2. Backend aligns clauses and computes differences.

3. System presents changes grouped by risk category and highlights
new/modified risky clauses.

Alternative/Exception Flows:

e Al (Alignment Fails): System falls back to text-level diff and labels
results as coarse.

Scenario 13: Delete an Agreement and Its Analysis Results
Primary Actor: End User

Supporting Actors: Agreemind Ul, Backend API, Storage Service
Entry Condition: User is viewing an agreement in the vault.

Exit Condition (Success): Agreement and associated artifacts are removed,;
vault list updates.

Main Flow:
1. User selects “Delete” and confirms.

2. Backend deletes stored document, extracted text, report outputs, and
reminders (as applicable).

3. Ul confirms deletion and returns to vault list.
Alternative/Exception Flows:

e Al (Network Failure): Ul shows “Delete pending” and retries, or asks
user to retry.

19

y
S T

End User

3.5.2 Use-Case Models

User-facing

Agreemind System

(_Compare Two Agreements)
|y TR TS

-

/’\Pelete Agreemeni)
| ——(Sante)>
/a(_Iog Inz

(Reset Password

I

N *-__\}7_;_7_, T
End Use _Upload Agreement (PDFD-

~ _«includex

-\/Paste Agreement Text-‘z‘ «includes Tl
- " <= - - _xindude R o — — =
T3 a:_\nerate Analysis Report - — - sincuder e
- - «includes_ _ _ > yeisten
“Import via Mobile Share = -7
__ (URUText) -~ .
J
f e
«include» 1 'd i ighli)
B y_\ﬂEw Risk nghllght_r_
«include» » T -
’
,
I —_— v P
‘ ~ .
‘éf‘fe Agreement to VaEI/t/, v [
— — A " -
i‘f.""‘:'Ude” ('View Key Dates & Obligations - — sextend»

[N L
f - -
\X/"’ ' -
== —]

% L5 :Qnalyze Current Webpage ™
AN \,.‘,,_7_ (via Extension) _7_,,,./
Browser Extension o T

System + external services

2N
Storage Service

/(DBiObiect Storage)

Agreemind System \

re Agreement & Repol
> I

«includes, -

(Compare Two Agreements\ _ — —_
— _ - Va Request Consent for
T e “.__ External LLM Processing
-7 includes_ - % B N
. L «include»_ “Detect Risky Clause;:)

«includes

ubmit Agreement Cnnter;t
__ (PDF/Text/URL) __—

e e «include» _ -)(éenerate Analysis Repn§ T
_ xinclude» . Parse & Extract Text ¥ = Ben .
~—__(OCRif needed) -

- ~ _ «include»

-y — -
(_Extract Dates & Obligatios

[ﬁ;hedule Reminder

Send Reminder Notification »

AN\ AN\
Notification Service External LLM API Provider

(i0S/Android/Web)

AN
Local/Custom Model Servic

20

3.5.3

Object and Class Model

@ User

+userld: UUID

+email: String
+passwordHash: String
+createdAt: DateTime
+status: AccountStatus

0..%|

@ Agreement

+agreementid: UUID
+title: String
+serviceName: String
+category: String
+createdAt: DateTime

0.1

© ConsentRecord

+consentid: UUID
+decisionAt: DateTime
+allowExternalLLM: Boolean
+scope: ConsentScope

+jobld: UUID

+createdAt: DateTime
+startedAt: DateTime [0..1]
+finishedAt: DateTime [0..1]
+status: JobStatus
+errorMessage: String [0..1]

© Modellnvocation

1

» requires

¥ uses

0..%

+invocationld: UUID
+provider: ModelProvider
+modelName: String
+startedAt: DateTime
+endedAt: DateTime [0..1]
+status: InvocationStatus

¥ has

© Reminder

+reminderld: UUID

+scheduledFor: DateTime
+createdAt: DateTime
+status: ReminderStatus

1.%

© AgreementVersion

+versionld: UUID
+capturedAt: DateTime
+sourceType: SourceType
1 | +sourceUrl: String [0..1]

+language: String
+status: VersionStatus

© AnalysisReport

@Accuuntﬁtatus @VersinnStatus @ SourceType @Jobstatus
N PdfUpload Queued
gﬁ:v:nded .E:laar — PastedText Running
Delsted Faile{l MobileShare Completed
ExtensionCapture Failed
0..*

= [(@Modelprovider] | @mvocationstatus @rikieve © session

@CDHSEMSCDPE Siccess Low +sessionld: UUID

PerAnalysis External API Failure Medium +issuedAt: DateTime

4 LocalModel Partial High +expiresAt: DateTime
Unknown +revoked: Boolean
@ ExtractedType
ReminderStatus ChangeType
RenewalDate ® @ S
CancellationWindow Scheduled Added
NoticePeriod Sent Removed
PaymentObligation Cancelled Modified
Other
4 processedBy 4 produces / # createdFrom
0.1 1
@ Analysisjob

© DocumentSource

+reportld: UUID
+generatedAt: DateTime
+overallRiskLevel: RiskLevel
+disclaimerShown: Boolean

+sourceld: UUID

+type: SourceType
+originalFilename: String [0..1]
+url: String [0..1]
+rawTextProvided: Boolean

© ComparisonReport

+comparisonld: UUID
+generatedAt: DateTime
+summaryOfChanges: Text

¥ includes

4 contains

4 extracts

0.
© Document

+documentid: UUID
+text: Text
+checksum: String
+pageCount: Integer [0..1]
+ocrUsed: Boolean
+createdAt: DateTime

@ Extracteditem

© Summary

+summaryld: UUID
+plainLanguage: Text
+keyPoints: Text

© RiskFlag

+itemid: UUID
+flagld: UUID +type: ExtractedType
+confidence: Float +label: String

+explanation: Text

+dateValue: DateTime [0..1]

+suggestedUserAction: Text [0..1]

@ RiskCategory

+relativeRule: String [0..1]
+confidence: Float

1 1

¥ classifiedAs

A refersTo

1 @ Clause

1

¥ evidenceFrom
0..1]

+categoryld: UUID
+name: String

+description: String

+clauseld: UUID
+index: Integer
+title: String [0..1]
+startOffset: Integer
+endOffset: Integer
+rawText: Text

¥ contains

21

F basedOn

4 contains

© Change

+changeld: UUID
+type: ChangeType
+description: Text
+risklmpact: RiskLevel

3.5.4 Dynamic Models
3.5.4.1 Activity Diagrams
3.5.4.1.1 Agreement Analysis Flow (Upload / Paste / Share / Extension)

b

User initiates ingestion

.

v

|’ Client sends content metadata to Backend API ‘\
- A

yes /Inputvalid? . no

(Upload PDF / Paste Text /Share URL/Text / Extension capture} J

(type/size/non-empty)

S

- ™
| Create Analysisjob (Queued) |

—

Ie ™
| store raw input (temperary or vault-prep) |

¢ no

Input is PDF? #

S

Is ™
Fetch webpage content
page

ves

v

- ~ yes
| parse POF |

no

Input is URL?

Fetch allowed/successful?

7 N >
| Extract readable text | | Return "Fetch failed" + ask userto paste text |

e N o =
Extract OCR text | | Mark job Failed (OCR failure) |
. PN J

| ,

- ~
Return emror + guidance to user
9

| |

Bl

- ~
| Normalize text |

2

' ™
| Segmentclauses |

—

Prompt user for per-analysis consent
(external LLM processing?)

Ves no

¢ User consents to external LLM? ¢

Call External LLM AP for ‘

[Run local model analysis if available |
summary + risk flags + date extraction h S
h. /

Generate report (may be partial) \ | Assemble partial report

\\Fa\lback to lecal model if au‘a\lable/l ~ ‘ \Eparsing + segmentation only) |

——

[Assemble AnalysisReport |

[Assemble partial report

' ™y

| Run local model analysis (partial or full} |

A 4 (parsing + clause segmentation only)
-4

|

|’ Assemble AnalysisReport (may be partial) J
. J

| ¢

Y

M

[Persist report (and document if user chose vault) \
/—*—'\.
| Mark job Completed |
h. A

B 2

|f Return report te client J
. y,

=

v

e ™
| Reject request with validation error |

®

I 2

I Y
| Use pasted/shared text directly |

22

3.5.4.1.2 Mobile Share to Agreemind

b

|r User views webpage in mobile browser/app ‘|
h -

|r User taps Share \|
. vy

——

- -

|r User selects "Agreemind" \|
h iy

v

f.-' ™

05 launches Agreemind with shared payload
(URL andfor selected text)
p

¥
yes no

¢ Payload contains URL? ¢

-

! " VEs . no
| Show "Import from Share" screen] ¢ Payload contains text? ¢
. J

-

Show “Import from Share" screen 1| [Show error: "Mo content received" 1|
L _.z" M .-“Jl

-~

e
I

By
User confirms analysis]
b v

- ",

| User confirms analysis |
3 oy

[Send UBL (+ any text) to backend 1|
. oy

"y

|r Send text to backend
.

> |
rv
-

|r Backend continues with AD-01 Analysis flow |
__,-'

k ®

A

A

23

3.5.4.1.3 Compare Two Agreements

M |

[User opens Vault / Comparison screen \|
. oy

, ¥

|r User selects Version A and Version B]
b A

, v

. ™
| Client sends compare request to backend]

p ‘# p
¢ YBS " Both versions exist and accessible? 12 ¢
[Fetch normalized texts and clause sets ‘| |f Return error (not found / unauthorized)
A _./" \-\. -
] ‘# H‘ é
[Align clauses (by similarity/structure) |
. _J
¢ YEs Alignment successful? no
r-‘ Y r’ ™
Compute clause-level changes | Fallback to coarse diff (text-level)]
(Added/Removed/Modified) . S
\\. o
e ~, |r Mark comparison as "coarse"
| summarize changes (optional)] . -
b A
ldentify risk-impacting changes
(optional, based on existing risk flags)

- -
’V_\
re Y
Create ComparisonReport
P P

, v

¢ ™
[Return comparison results to client |

e

24

Send "Create Reminder” request to backend]
/ (05 settings guidance)

.

3.5.4.1.4 Reminder Scheduling and Notification Delivery

*

[User opens Analysis Report

"Key Dates & Obligations"]

¥

[User selects an Extracted Iltem]

¢ no
v

YB35 Extracted item has usable date?

|r Show "Date ambiguous/missing” |
A

N —
|

[Show reminder setup Ul

(default: X days before)

\ .
l . | Allow user to enterfedit date manually |
\ J

| User selects reminder time/options]
A A

$ User enters a date?
yes

[Client checks notification permission]
Proceed with reminder setup using manual date

Permission granted?

[Prompt user to enable notifications |

User continues without notifications 7%
¢yes

|' Send "Create Reminder {silent)" request to backend |
A

[Store Reminder (Scheduled) ‘| (Return validation error
\ A {e.g., time in past)

. |

Cempute trigger time using user timezone
J

v :

Register reminder with notification scheduler
(server job or push provider)

A,

-
[Confirm success to user |
A

\. N .

[Wait until trigger time |
\. A

‘f<ﬂemindercancelled by user before trigger? jnn
-

Send notification to device
(local notification f push)

|

|' Update Reminder status = Sent]

-

J

Update Reminder status = Cancelled |
\ S

Delivery failed?
yes

Retry based on policy {limited retries) |
h -4

YE5 Retry succeads? 19

Mar“ delivery as Fal\ed

[Mark Sent]
T (optmnal status)

.

25

3.5.4.2 Sequence Diagrams

3.5.4.2.1 Upload PDF — Per-Analysis Consent — Report Generation

o “ “ o A “ F:%

\ Document Processor N
User Mobile/Web UI Backend API Job Manager (Parse/OCR) Clause Segmenter

External LLM APl Local/Custom Model Storage (DB/Object)

Select PDF + Upload | | \ 1 |

| POST Janalysis (file,

H Validate type/size

Create i 1s=Queued)

Store raw file (temp or vault-prep)

| 202 Accepted + jobld

| GET fanalysis/ {jobld}/status (poll)

status=Queued/Running

| Extract text (PDF)
! SRR

alt [Text extractable]

| extractedText
| e

oeR]
OCR

alt__J [OCR success]

\ extractedText
< cted S

< SrTor(OCR failed) |

Update job statu

Failed + guidance

Segment clau actedText) :
: < Slauses(] _ | 1 |
| Notify “Consent required” (job state) i i |
| Status=. onsent | 1 1
Show consent dialog (per analysis)
Consent decision (Allow extemal? Yes/No) _| :
i POST /analysis/{jobld}/consent (decision)
Store ConsentRecord | : :
| . Consent saved
Run i text, clauses, consent) | | i

alt [consent = Allow external]
Summarize + Risk + Dates(text, clauses)

| H alt__J (External LLM success]

summary + risks + extracteditems |

H [External LLM failure] !
Fallback local analysis(text, clauses) !

alt__J (Local available] T

partialffull outputs .
g iocal mode]
partial outputs (segmentation only)
-

fconsent = Deny externai]
Local analysis(text, clauses) ' |

' alt __J [Local available] | .

partial/full outputs ! |

o ioEai madei])
partial outputs (segmentation only) i

AnalysisReport (full/partial)

Persist report + artifacts ' | |

Update job status=Completed ' ' i 1

1 status=Completed

GET /analysis/ {jobld}/report

Load report
|_ Report JSON | V | |
Render report (summary, risks, dates) | | | |
User Mobile/Web Ul Backend APl Job Manager Document Processor Clause Segmenter Consent Ul LLM Router External LLM APl Local/Custom Model ~ Storage (DB/Object)
o) S {Parse/OCR)) a) &)) %
T {)) N Q O ((—

26

3.5.4.2.2 Mobile Share Sheet (URL/Text) — Backend Fetch — Consent — Report

asy -
S o) o) ot) O) ®))
VAN S N s Web Fetcher N 4 g A\ N -
User Mobile OS Share Sheet Agreemind Mobile App Backend API (Readability/Extractor) Clause Segmenter Consent Ul LLM Router External LLM APl Local/Custom Model Storage (DB/Object)

| Share current page _| i H | | | ! ! ! |
| | Launch with payload (URL andjor text) _ | | | | | | | | |
| Show "Import from Share" i H i i i i i i H
| _ Confirm analysis | ! ! ! ! ! ! ! ! !
Cotn 1 | | | . | | |
| POST fanalysis (source=MobileShare, urljtext) _!
i | Store source i i i i i i |

| 202 Accepted + jobld 1 i

alt [Payload has URL] | |

! | Fetch + extract text(url) !

i >

alt [fetch success] T

Tfetch
error(fetch failed)

Error + ask paste text 1

[Payload hias text]

Use provided text

| Segment clauses(text)

| clauses[] '

otus—AwaitnaConsent . 3 | | ;

Show per-analysis consent dialog i

| Consent Yes/No | i
| POST fanalysis/ {jobld }/c ision)
1 1 1 | Store ConsentRecord | : : 1
3 ‘ ‘ I Run analysis(text, (Iausei,imnsent) ‘ ‘ I
alt) (consent = Allow externall | 7
! ! ! ! ! ! ! ' Summarize + Risk + Dates J ! !
| | | i | | || A T 3 3 i
3 3 3 s 3 B |- ; ; s
i i i | i i i | fallback local | | |
3 3 3 E 3 3 3 3 outputs(partial/full} 3 3 E
| | | | | | | 1 |
! ! ! | ! ! ! | local analysis } ! |
| | | | | | | J—— | !
| | | 5 | | | persitraport 1 1 |
| | | status=Completed : | | | 3 3 3 ;
| GET Janalysis/{jobld }/report ;
| Report JSON i
| _ Display report i i

Usér Mobile OS S;hare Sheet Agreemind ﬁnbile App Backe;d API Web Félcher Clause Ségmenler Consént U umMm R‘ uter External ‘LLM API LocaIICust‘ m Model Storage (IiBiObied)
)) (Readability/Extractor) & I Ap\) N
O O O ES O o O @) O
p—

27

3.5.4.2.3 Browser Extension — Quick Badge + Deep Link to Full Report

Consent Ul L

P ~ —
P sy v I o Y Ia) I E—ﬂ
(@

AN O o Webpage Extractor _J - _/ -
User Browser gxtensinn Backspd API (DOM,:‘rext) Clause Segmenter (Extensiqn Popup) LLM Router ExtemaI‘LLM API anallcustpm Model Storage) /Object)
| Click extension icon |
Extract page text + URL							
e							
	POST /analysis (source=ExtensionCapture, url, text)						
! Store source metddata							
: _ 202 Accepted + jobid : ! ! ! ! ! ! !							
: : ! Segment clausesitext) : } } } } }							
	e						
S —	3 3 3 3 3 3 3						
Show consent prompt {per analysis)							
Consent Yes/No							
E	POST Janalysis/ {jobld}/consent(decision)	3 3 3 3 3 3 3					
Store ConsentRecord i i i i j							
Run analysis{text, clauses, consent) 1 1 1							
E i E i i i alt [consent = Allow external]] i						
i i i i i i	Summarize + Risk + Dates i i						
E ‘ , ‘ ‘ ‘ ‘	outputs 1 ‘ ‘						
i	H 1 1 1 fconserfé = Beny external] i 1 1						
: : ' i ! ! ! local analysis . .							
: } : } } }	outputs(partialffull : } }						
Persist report		!					
Completed + overallRiskLevel H							
Show badge (Low/Med/High)							
_ + "Open Full Report" ! ! ! ! ! ! ! ! !							
ek "Open Fall Report : ; 3 3 3 3 3 3 3							
Deep link to app/web report view	E 3 3 3 3 3 3 3						
Usler Browser éxtensinn Backe;ld APl Webpage‘Extramnr Clause Sé menter Cnnsént ul m R‘outer ExlemaI‘LLM API Lucallcust‘nm Model Storage (ISBfobiect)
) A (DOM/Text) (‘g‘ (Extension Popup) &) 5 -
O/ O \A\. \,/ o) O -
v

3.5.4.2.4 Compare Two Agreement Versions

-)
)) e - & & ~
AN N N o - N g Change Summarizer
User Mobile/Web UI Backend API Comparison Service Storage (DB/Object) Clause A Diff Engine (optional)
| Open Vault -> Compare Versions _| | H H | ! |
|_ Select Version A and Version B | i H i | i
| Confirm compare) | h h h | h
i | POST /compare (versionAld, versionBld) _| H ' H i H
| H | Authorize user access to both versions | ! ! H
| | | Load Version A (normalized text, clauses, repart) | | |
| 1 |_Adata | | 1 | 1
| H |_Load Version B (normalized text, clauses, report) H i H
| : L Bdana : ' : | :
i H _Compare(A, 8)) H i H
! ! ! ! Align clauses(A.clauses, B.clauses) ! ! ! !
: ' ! alt) [Alignment success] 1 i i i
i H i |_alignedPairs + unmatchedA + unmatchedB | i H
| | | | Compute changes(alignedPairs, unmatchedA, unmatchedB) | | \
| | | | changes(Added/Removed/Madified) | | |
i | i TAiignment fails] i | i 1
' ' ' 1 alignmentError ' ' '
| i | | Fallback coarse diff(A.text, B.text) i i | i
1 | 1 H coarseChanges | | |
| H | opt_/J atural y of ch 1 j A |
1 1 1 | Summarize Ehanges(thangEsfcuarsechangies) | | \
i H i | summaryText | 1 | |
! | ! | Persist ComparisonReport + Change list | ! |
! | ! ' stored(comparisonid) i | ! |
! | ' comparisonid ' | ! |
| 200 0K (comparisonid) i :
| | GET /compare/{comparisonid} | | | | |
i h | Load ComparisonReport 1 h i h
i H |_ report + changes i H H i H
| | report JSON | 1 1 | h
| Display "What changed?" | | | H H i h
'+ Added/Removed/Modified ! ! ! ! ! !
| + riskimpact if available | | | | ' 1 '
User Mobile/web Ul Backend API Comparison Service Storage (DB/Object) Clause Aligner Diff Epgine Change Summarizer
(o [o) - .A\ 7y (optional)
o o R - R - &

(D)
Ry

28

3.5.4.3 State Diagrams

3.5.4.3.1 AnalysisJob State Diagram (core backend pipeline)

reportPersisted()

-

(’Completed\‘ [Failed\]

l . |

. , kS y

unrecoverableError()

Running

createjob()

" Created |

o Iy

enqueue()

Y

[Queued k

workerPicksUp()

[Preprocess
N

1
ParseOrFetch |
/Segment\
|)
("ModelRun |
~

r’As.su'-zmblr-zFlr-zport

e

consentSubmitted(decision)

(AwaitingConsent\

consentRequired()

userCancels()

Y
Cancelled

29

3.5.4.3.2 AgreementVersion State Diagram (vault item lifecycle)

createVersion({source)

("Draft |

/ startAnalysisjob(

I - AY
Processing

analysisCompleted() éanalyysFailed[}

" ana Iyzed'\' " Failed |

userDeletes()

s oy h :
userArchives() ' optional feature userRestores() 'optional feature userDeletes() ;userDeIetes()

[Archived | "Deleted

3.5.4.3.3 Reminder State Diagram (notification pipeline)

createReminder()

Y

- ",
W

[Draft

~ _

saveReminder(triggerTime)

P A,
| Scheduled |

triggerTimeReached()

) ¥

| PendingDeIivery-\]
userCancels() | J

retryScheduled() ' optional

‘. vy

userCancels() |deliverySuccess() ™ deliveryFailure()

-’ :

Cancelled)

userDeletes()

30

3.5.4.3.4 ConsentRecord State Diagram

consentRequested(jobld)

i Pending k

userAllowsExternal() (userDeclinesExternal() timeoutReached()

A 4
" Granted | " Denied | (Expired N
. ,f . ,f

externalProcessingStarted() \ localOrPartialProcessingStarted() /fallbackLocalOrPartial()

’Applied A

31

3.5.5 User Interface

Login Page:

Agreemind
Welcome Back

[IEmail

Password

Forgot Password?

Don't have an account? Sign Up

32

Homepage:

9:41

Good Morning,

Emre

Q0 Search your agreements...

£ Compare Documents

/% Urgent Attention

i
-

+ Equinox Gym Membership

Equinox

Renewal in 14 days

Your Vault

v 1O avond charges

3 contracts
Equinox Gym Membership

Equinox

® High Risk £ Renewal in 14 days

Spotify Premium Terms

B Auto-manthly

Freelance Service Agreement

33

Contract Risk Analysis Page:

&

Freelance Service Agreement

Client: TechCorp Inc.

Safety Score

£ Risks O Ask Al T Full Text

Action available

"Payment terms are Net-60 from invoice

date.”

Action available

"All intellectual property created during
engagement becomes exclusive property
of Client."

34

Document Query Page:

Equinox Gym Membership

Equinox

Safety Score

® High Risk

B Surmmary A\ Risks D Ask Al 2 Full Text

I've analyzed your Equinox Gym
Membership contract. | found 4
clauses worth discussing. What
would you like to know?

How do | cancel? Can they raise prices?

Ask a question

35

Contract Summary Page:

Equinox Gym Membership

Equinox

Safety Score
® High Risk

2 high-risk clauses

B summary £ Risks

Al Analysis Summary

This gym membership contract contains several
concerning clauses including restrictive

cancellation policies and automatic price

increase provisions. We recommend reviewing

the highlighted risks before your renewal date.

Pro Tip: Review the "Risks" tab for specific
clauses that nead your attention

36

Actionable Clause Page:

Equinox Gym Membership

Equinox

Safety Score
® High Risk

2 high-risk clauses

warnings

Summary & Risks

ALCUoN avallaole

"Member data may be shared with

affiliated partners for marketing purposes.”

Your personal information may be shared with
third parties without explicit consent for each
instance.

O Opt cut of data sharing P MNegotiate

B3 Draft Email

37

Draft Generation Page:

£ Opt-Out Email

Subject

Data Share Opt-Out Request

Message

Dear Spotify Team,

| am writing to formally notify you that,
according to the Spotify Terms and Conditions,
users may opt out of certain data sharing by
submitting a request via email.

Through this message, | am exercising that
option and requesting to opt out of any data
sharing beyond what is strictly necessary to
provide the core Spotify service, including use
of my listening data for analytics or

() Copy Draft </ Open in Email

Document Upload Page:

Upload Contract

d

Tap to Upload Files
(Supported formats: PDF, DOCX, JPEG)

©

Take a Picture

39

Contract Comparison Page:

< Compare Documents

Equinox Gym Membership w

+— Equinox Gym Membership

% Eguinox
® High Risk 45
J 100
KEY RISKS

Unfair: Cancellation requires 30 days in-person
notice at your home ...

Financial: Provider reserves the right to increase
menthly dues with 15...

Auto-Renewal: Member agrees to automatic
annual renewal unless cancelled 6...

MACFit Gym Membership

MACFit Gym Membership

_ MACFit

® Safe 92
#1100

KEY RISKS

[
|

Fair: Cancel anytime through your account
settings with immediate ...

Liability: Members are not liable for the damage
occured to gym equipment

40

4 Other Analysis Elements

4.1 Consideration of Various Factors in Engineering Design

4.1.1 Constraints

4.1.1.1 Implementation Constraints

The project is constrained to React Native to allow for a single codebase
that deploys to iOS, Android, and Web platforms simultaneously. This
limits the use of certain web-specific DOM manipulations and CSS-in-JS
libraries that are not compatible with the React Native bridge.

The backend is restricted to FastAPI (Python). While performant, this
constrains the system to synchronous/asynchronous patterns specific to
Python's asyncio and requires tight integration with Python-based Al
libraries (PyTorch, Transformers) rather than Node.js or Go-based
alternatives.

4.1.1.2 Legal & Regulatory Constraints

The system operates under the strict constraint that it must not provide
legal advice. All outputs must be labeled as "informational summaries”
or "risk detections.” The Ul design is constrained to avoid prescriptive
language (e.g., "Do not sign this") in favor of neutral analysis (e.g., "This
clause limits your liability rights™).

As a platform processing personal contracts, the system must comply
with GDPR. This necessitates architectural features for data portability,
permanent account deletion ("Right to be Forgotten™), and strict consent
logging for data processing.

4.1.1.3 Privacy and Security Constraints

Users upload sensitive documents. The system is constrained by a
"privacy-first” policy where user data must not be used to train the global
model without explicit opt-in.

All data must be encrypted at rest within the Personal Vault and during
transmission using industry-standard secure communication protocols.
The system implements widely accepted open standards for
authentication and authorization to ensure that a user’s legal documents
are accessible only to them, even in a shared database environment.

4.1.1.4 Usability Constraints

Legal documents are notoriously dense. The Web and Mobile interfaces
are constrained by internationally recognized accessibility guidelines,
requiring high contrast, screen reader compatibility, and scalable text to
ensure usability for all citizens, including those with visual impairments.

Legal contracts are often long and difficult to read. To avoid
overwhelming the user, the interface is constrained to use a "progressive
disclosure" strategy. This means the system must show summaries and

41

critical risks first. The full, detailed legal text must remain hidden or
collapsed until the user specifically chooses to view it.

4.1.1.5 Social Constraints

There is a social risk that users may blindly trust the Al and sign a bad
contract because the system didn't flag a specific loophole. The interface
Is constrained to include "Human-in-the-Loop" reminders, encouraging
users to verify critical details manually.

The tool is designed to democratize legal understanding. Therefore, the
"Plain Language" summaries must be written with a simpler grammar
level to ensure they are accessible to users with different levels of
understanding.

4.1.1.6 Technical Constraints

The "Personal Vault" querying relies on Dense Passage Retrieval (DPR)
using dual-encoder networks. The system is constrained by the
semantic gap between layman user queries and formal legal
terminology. To mitigate hallucinations, the generative model is strictly
constrained to answer only using the context retrieved by the vector
store, rejecting queries where the similarity score falls below a set
threshold.

Unlike simple extractive methods, the "Sequence-to-Sequence”
Transformer models used for abstractive summarization are
computationally intensive. Real-time processing is constrained by the
inference speed of these models, requiring asynchronous processing
gueues for large documents to prevent timeout errors in the client
application.

The "Alerts & Reminders" module utilizes Named Entity Recognition
(NER) for temporal extraction. The system is constrained by the
complexity of resolving relative legal timelines (e.g., "the first business
day following the completion of the Audit Period"). The extraction logic
is limited to specific recognizable temporal patterns and requires
heuristic fallbacks for highly ambiguous date references.

The Automated Risk Detection classifiers are trained on labeled
datasets for specific document types (e.g., Terms of Service). The
system is constrained by "domain shift,” meaning a model trained on
software licenses may fail to accurately detect unfair clauses in a rental
lease. Consequently, the system must enforce strict document
classification prior to analysis to select the appropriate risk model.

To support efficient indexing and retrieval for the "Personal Vault," the
system is constrained to a fixed vector dimension size (e.g., 768
dimensions for BERT-based embeddings). This imposes a trade-off
between semantic precision and query latency, requiring optimized
index structures (e.g., HNSW) to maintain sub-second search speeds as
the vault grows.

42

4.1.1.7 Cost Constraints

e Since the system involves training custom models for each module, the

project is constrained by limited financial resources for computational
power. High-performance hardware accelerators are required for the
training and fine-tuning phases. This necessitates strict budget
management for cloud computing services and prevents the team from
training massive parameter models, limiting the scope to smaller, more
efficient architectures that can be trained within a finite budget.

Hosting multiple custom-trained models requires significant memory and
processing availability continuously. The architecture is constrained to
use model optimization and compression techniques to reduce hosting
overhead. The system must be designed to run on affordable commodity
hardware or lower-cost infrastructure tiers to remain financially viable,
preventing the reliance on expensive enterprise-grade clusters for daily
operations.

Table 2: Factors that can affect analysis and design.

Constraint Type

Effect level

Effect

Implementation

6

React Native + FastAPI constrain Ul
capabilities, shared code patterns, and
backend integration choices; encourages
one centralized API and reusable Ul
components across platforms.

Legal & Regulatory

System must avoid legal advice, enforce
disclaimers and neutral language, and
support consent + deletion/export
features aligned with GDPR principles.

Privacy and Security

10

Contracts are sensitive; requires
encryption in transit/at rest, strict access
control, per-analysis consent for external
LLM usage, and data
minimization/retention limits.

Usability

Dense documents require progressive
disclosure, readability-first summaries,
accessibility (contrast, scaling, screen
readers), and explainability/traceability
from outputs back to clauses.

43

Social 6 Users may over-trust Al; requires

uncertainty signaling, “verify yourself’
messaging, and careful risk framing to
avoid harm from omissions.

Technical 8 Document variability (PDF/OCR/web),

long-text processing, async jobs, and
model reliability/domain shift constrain
what'’s feasible; demands fallback
behaviors and partial results when
needed.

8 Limited budget/GPU access constrains
model training and hosting; pushes
toward smaller models, optimized
inference, bounded API usage, and
phased feature scope.

4.1.2 Consideration of Global, Cultural, Social, Environmental, and
Economic Factors in Engineering Design

Agreemind is a consumer-facing legal assistance system intended to
improve everyday users’ understanding of terms of service, privacy policies,
and common consumer contracts. Because these documents shape user
rights and obligations across many contexts, the system’s analysis and design
were influenced by global, cultural, social, environmental, and economic
factors as described below.

4.1.2.1 Global Factors

e Agreements and privacy practices differ across countries, and legal
terminology, consumer protections, and dispute resolution norms are not
globally uniform. Therefore, Agreemind was constrained to an English-
only MVP and avoided jurisdiction-specific legal conclusions. Outputs
are presented as informational summaries and risk indicators, with
explicit disclaimers and clause-level traceability.

4.1.2.2 Cultural Factors

e Legal awareness, and expectations about privacy and contractual
fairness vary culturally. To reduce misinterpretation and over-trust,
Agreemind uses plain-language explanations and avoids culturally
loaded or prescriptive language. The user interface is designed to be
neutral and respectful, prioritizing clarity and transparency.

44

4.1.2.3 Social Factors

A major social risk is that users may rely on the system as a substitute
for professional advice or assume that “no warning” means “safe.” This
affects design through (1) visible disclaimers that the tool is not a lawyer,
(2) uncertainty signaling when the model is not confident or evidence is
weak, and (3) human-in-the-loop prompts that encourage users to read
critical clauses and verify extracted deadlines.

4.1.2.4 Environmental Factors

Agreemind uses compute-heavy NLP models, which can increase
energy consumption, especially if large documents are processed
frequently or models are hosted continuously. This affected design by
favoring asynchronous processing (to avoid repeated retries/timeouts),
reuse of cached results for previously analyzed documents, and
preference for smaller, more efficient models where possible. The
system also limits unnecessary processing (e.g., analyzing only when
the user explicitly requests it rather than constant monitoring), which
reduces compute usage and associated environmental impact.

4.1.2.5 Economic Factors

Many users affected by unfair terms or complex subscriptions are also
sensitive to cost. This influenced the design to keep the MVP feasible
with limited budget by using a centralized backend, controlling external
API usage through per-analysis consent, and avoiding expensive
features. The system is designed so that core value (upload — summary
— risk highlights — key dates) can be delivered with bounded compute
costs, while advanced features (continuous version tracking, deep legal
rule engines) remain optional extensions. Internally, project constraints
such as limited GPU access also shaped the choice to prioritize feasible
model sizes and incremental improvements over training very large
models.

Table 3: Impact of Global/Cultural/Social/Environmental/Economic Factors

Factor

Effect level How it affected analysis and design

Global

MVP, avoidance of legal conclusions,

analysis consent before external LLM
calls.

Cultural

Social

8 Over-trust risk led to disclaimers,
uncertainty/confidence indicators,
human-in-the-loop prompts, and

45

7 Jurisdictional variability and cross-border
data processing risks led to English-only

traceability to source clauses, and per-

6 Differences in legal literacy and privacy
norms led to plain-language summaries,
neutral phrasing, progressive disclosure,
and accessibility-focused Ul decisions.

conservative wording that avoids
prescriptive legal advice.

Environmental 5 Compute/energy concerns led to user-

initiated analysis (no background
monitoring), asynchronous jobs,
caching/reuse of results, and preference
for efficient models where possible.

Economic 8 User affordability + team budget
constraints led to bounded API usage,
feasible model sizes, centralized
backend, and MVP scoping that avoids
expensive continuous features.

4.1.3 Standards

IEEE 830: Used to define functional and non-functional requirements,
ensuring the specification document is complete and verifiable.

UML 2.5.1: Utilized for system modeling. Class Diagrams represent
data entities, while Sequence Diagrams map interactions between the
Client Layer and API Gateway.

REST API Guidelines: The backend (FastAPI) follows REST
principles for stateless communication with client applications, using
standard HTTP methods and status codes.

WCAG 2.1 Level AA: Mandates contrast ratios and screen-reader
compatibility for the Web and Mobile interfaces, ensuring accessibility
for users with visual impairments.

TLS 1.3: Secures data transmission between clients and cloud
infrastructure, preventing interception during upload or analysis.

ISO/IEC 22989: Defines Al concepts and lifecycle management terms
to ensure consistent terminology across documentation and code.

4.2 Risks and Alternatives

Al Misinterpretation of Legal Nuance: Legal language is highly
context-dependent, where a single word can change the entire meaning
of a clause. There is a risk that the system might oversimplify a complex
provision during summarization, causing the user to miss a subtle but
critical liability. If the system fails to flag a specifically worded loophole,
the user might sign a harmful agreement. To mitigate this, the system
must prioritize "precision over simplicity" for high-risk clauses and
always present the original text alongside the summary, encouraging
users to verify the source.

46

User Over-Reliance: Users may develop a habit of blindly trusting the
"Green/Safe" indicators without reading the actual contract. This
"automation bias" creates a dangerous situation where a user might
agree to terms simply because the Al didn't flag them. To address this,
the user interface should be designed to prevent "one-click" acceptance,
requiring users to interact with or acknowledge specific sections before
the analysis is marked as complete.

Data Security & Trust: The platform handles highly sensitive personal
documents (e.g., employment contracts, debt agreements). A security
breach or even a perceived lack of privacy could destroy user trust and
result in significant reputation damage. If users are hesitant to upload
documents, the system fails. Mitigation involves minimizing data
retention: processing files without permanently storing them where
possible, and maintaining transparent data usage policies.

Input Quality Issues (OCR Failure): Since many users will capture
contracts using mobile cameras, poor lighting or shaky hands could
result in low-quality text extraction. If the underlying text is garbled, the
analysis will be flawed. The system must include a quality assurance
step that detects illegible inputs immediately and prompts the user to
retake the image rather than attempting to analyze bad data.

Economic Sustainability: Processing long legal documents requires
significant computational resources, which creates high operational
costs. If the cost of analyzing a document exceeds the revenue or budget
allocated per user, the project may become financially unsustainable.
The alternative plan involves implementing usage limits or tiered service
levels to balance the computational load.

Table 4: Risks
Likelihood Effect on the project | B Plan Summary
Al Medium High Side-by-side source
Misinterpretation verification & disclaimer
prompts
User Over High Medium Mandatory manual review
) steps for critical flags
Reliance
Data Security & Low High Data minimization &
Trust "process-without-store"
options
Input Quality High Medium Automated quality checks &
Issues (OCR retake prompts
Failure)
Economic Medium High Usage quotas & resource
Sustainability optimization strategies

47

4.3 Project Plan

Below you can see various tables that you will make use of.

The project plan can be reported by list of work packages and their content.

For better readability, a Gantt chart based on work packages can also be

added.

Table 5: List of work packages

WP# Work package title Leader Members involved

WP1 Team Formation, Topic Ata Soykal | All members
Selection, Supervisor
Search

WP2 Innovation Expert Interviews | Edip Emre All members

Donger

WP3 Requirements Elicitation & | Can Polat Ata Soykal, Emir
Project Information Form Bulbdl Gorguli

WP4 Project Specification Ata Oguz Can Polat Bulbl,
Document (Architecture + Edip Emre Donger
Scope)

WP5 Analysis & Requirements Emir Emir Gorguld, Can
Report (CS491 submission) | Goérguli Polat Bulbul

WP6 Web MVP Implementation Emir Ata Oguz
Sprint (Auth + Upload + Gorgula
Summary + Vault)

WP7 CS491 Demo Preparation Ata Oguz All members
(Web-only)

WP8 System Hardening (Jobs, Edip Emre Can Polat Bulbl,
Errors, Logging, Basic Donger Ata Soykal
Security)

WP9 Mobile App (React Native Ata Soykal | Emir Goérgulu, Ata
IOS/Android) + Share-Sheet Oguz
Ingestion

WP10 | Browser Extension (Send Can Polat Ata Soykal, Edip
page — badge — deep link) | Bulbl Emre Donger

WP11 | Clause Highlighting + Ata Oguz Emir Gorgulu, Ata
Report Viewer (Cross- Soykal
platform)

WP12 | Agreement Vault v2 Ata Oguz Can Polat Bulbdl,
(Search, Tags, Versions, Edip Emre Donger
Compare)

WP13 | Custom/Local Model Edip Emre Can Polat Bulbdl,
Prototype + Evaluation Plan | Donger Ata Soykal

WP14 | Testing, QA, Final Demo, Can Polat All members
and Final Report Package Balbal

48

WP 1: Team Formation, Topic Selection, Supervisor Search

Start date: 2025-09-15 End date: 2025-10-10

Leader: | Ata Soykal Members All Members
involved:

Objectives: Establish the team, define a feasible project topic, and secure
a supervisor.

Tasks:

Task 1.1 Brainstorm project ideas aligned with course expectations.

Task 1.2 Identify candidate supervisors; schedule and conduct meetings.
Task 1.3 Refine project scope to match a two-semester deliverable timeline.

Deliverables
D1.1: Topic summary + supervisor confirmation.

WP 2: Innovation Assessment & Stakeholder Interviews

Start date: 2025-10-10 End date: 2025-10-31

Leader: | Edip Emre Donger Members All Members
involved:

Objectives: Validate novelty/value, gather external perspective, and satisfy
innovation-form expectations.

Tasks:

Task 2.1 Interview 3—4 innovation experts and document feedback.
Task 2.2 Identify differentiation vs. existing legal-summary tools.
Task 2.3 Convert feedback into scope boundaries and MVP priorities.
Task 2.4 Reach an agreement with an innovation expert.

Deliverables
D2.1: Assessment of Innovation Form

WP 3: Requirements Elicitation & Project Information Form

Start date: 2025-10-14 End date: 2025-10-24

Leader: | Can Polat Bulbil Members Ata Soykal, Emir
involved: Gorgula

Objectives: Formalize high level requirements and project framing for
CS491,

Tasks:

Task 3.1 Define target users, key use cases, and non-goals (not a lawyer
replacement).

Task 3.2 Draft initial functional/nonfunctional requirements at high level.
Task 3.3 Define initial risks and assumptions.

Deliverables
D3.1: Project Information Form

WP 4: Project Specification Document

Start date: 2025-11-01 End date: 2025-11-28

Leader: | Ata Oguz Members Can Polat Bulbul,
involved: Edip Emre Dénger

Objectives: Produce a concrete project spec describing architecture,
modules, constraints, and intended features.

Tasks:
Task 4.1 Define the backend architecture and module boundaries.

49

Task 4.2 Specify major subsystems (ingestion, analysis pipeline, vault,
reminders, comparison).
Task 4.3 Document constraints (privacy/security/legal) and standards.

Deliverables
D4.1: Project Specification Document

WP 5: Analysis & Requirements Report

Start date: 2025-11-29 End date: 2025-12-19

Leader: | Emir Gorgulu Members Can Polat Bulbul
involved:

Objectives: Produce a detailed analysis model + testable requirements +
planning sections required by the department guideline.

Tasks:

Task 5.1 Write FR/NFR lists with numbering and testability.

Task 5.2 Produce UML diagrams (scenarios, use cases, class model,
activity/sequence/state).

Task 5.3 Write constraints, ethics, teamwork strategy, learning plan,
risks/alternatives.

Deliverables
D5.1: Analysis & Requirements Report

WP 6: Semantic Core (Segmentation, Obligations, Risk Prototypes)

Start date: 2025-12-01 End date: 2025-01-15

Leader: | Edip Emre Donger Members Emir Gorgula
involved:

Objectives: Establish the semantic backbone of the system.

Tasks:

Task 6.1 Clause segmentation with offsets and headings.

Task 6.2 Obligation and deadline extraction.

Task 6.3 Initial risk pattern detection.

Task 6.4 Define internal representations (Clause, RiskFlag, Obligation).

Deliverables
D6.1: Working Semantic Extraction Pipeline

WP 7: Web Application MVP

Start date: 2025-12-01 End date: 2025-12-22

Leader: | Ata Oguz Members Emir Gorguli, Can
involved: Polat Bulbul, Ata
Soykal

Objectives: Deliver a functional web MVP for CS491 demo.

Tasks:

Task 7.1 Implement web Ul, navigation and authentication flow.
Task 7.2 Upload / paste ingestion.

Task 7.3 Provide LLM-based summaries.

Task 7.4 Basic agreement vault.

Deliverables
D7.1: Web MVP build

WP 8: Mobile App MVP

Start date: 2025-12-15 End date: 2026-02-15

50

Leader: | Can Polat Bulbul Members Edip Emre Donger,
involved: Ata Soykal

Objectives: Build the mobile client for the app.

Tasks:

Task 8.1 Mobile Ul for auth, upload, report view, vault.
Task 8.2 iI0S / Android share-sheet ingestion

Task 8.3 Ul stabilization and parity with web

Deliverables
D8.1: Mobile app MVP (iOS + Android).

WP 9: Document Chat and Multi-Document Queries

Start date: 2025-12-15 End date: 2026-01-31

Leader: | Ata Oguz Members Emir Gorgula, Ata
involved: Soykal

Objectives: Deliver mobile clients and a user-initiated ingestion path
without background monitoring.

Tasks:

Task 9.1 Document chunking & embeddings.
Task 9.2 Multi-document retrieval.

Task 9.3 Chat interface over user vault.
Task 9.4 Answer grounding to source text.

Deliverables
D9.1: Working RAG-based document query system.

WP 10: Custom Model Prototype

Start date: 2026-12-10 End date: 2026-01-20

Leader: | Edip Emre Donger Members Ata Oguz
involved:

Objectives: Train a preliminary risk classifier to reduce reliance on external
APIs.

Tasks:
Task 10.1 Find suitable datasets.
Task 10.2 Train a local model for one subtask.

Deliverables
D10.1: Local model prototype.

WP 11: Document Comparison & Vault Enhancements

Start date: 2026-01-10 End date: 2026-02-15

Leader: | Ata Oguz Members Can Polat Bilbul, Ata
involved: Soykal, Emir Gorguli

Objectives: Enable long-term usefulness and differentiation.

Tasks:

Task 11.1 Agreement version grouping.
Task 11.2 Text / clause-level comparison.
Task 11.3 Vault metadata, tags, search.

Deliverables
D11.1: Vault v2.

WP 12: Browser Extension & Automatic ToS Detection

Start date: 2026-02-01 End date: 2026-03-15

51

Leader: | Edip Emre Donger Members Ata Soykal, Can
involved: Polat Bulbul

Objectives: Support pre-acceptance analysis flows.

Tasks:

Task 12.1 Browser extension for page extraction and seamless analysis.
Task 12.2 Risk badge + deep link.

Task 12.3 Android ToS screen detection & prompt.

Deliverables
D12.1: Browser extension prototype.
D12.2: Mobile ToS detection demo.

WP 13: Domain Generalization Beyond ToS

Start date: 2026-02-01 End date: 2026-04-15

Leader: | Emir Gorgull Members Edip Emre Donger,
involved: Ata Soykal

Objectives: Make the system usable in a wider range of contract domains.

Tasks:

Task 13.1 Extend taxonomy to new domains (e.g. employment, consumer).
Task 13.2 Test extraction robustness across domains.

Task 13.3 Update prompts / models accordingly.

Deliverables
D13.1: Multi-domain analysis report.
D13.2: Updated schema & taxonomy.

WP 14: Automatic Version Tracking & Change Detection

Start date: 2026-03-15 End date: 2026-04-15

Leader: | Ata Soykal Members Ata Oguz, Can Polat
involved: Bulbl

Objectives: Track evolving agreements automatically.

Tasks:

Task 13.1 Detect new versions.
Task 13.2 Clause-level diffing.
Task 13.3 Change significance summaries.

Deliverables
D13.1: Version tracking & change detection module.

WP 15: Legal Grounding & Compliance Checking

Start date: 2026-03-15 End date: 2026-04-25

Leader: | Edip Emre Donger Members All Members
involved:

Objectives: Ground analysis in real regulations and user rights.

Tasks:

Task 13.1 Select jurisdictions (e.g. GDPR, EU consumer law).
Task 13.2 Map clauses to rights and compliance issues.
Task 13.3 Update prompts / models accordingly.

Deliverables
D13.1: Legal ruleset documentation

WP 16: Testing, QA, Final Demo, Final Report Package

Start date: 2026-04-15 End date: 2026-05-05

52

WP10 -

WP11

WP12

WP13 -

WP14 o

WPL5 -

WP16 -

Leader: | Can Polat Bulbul Members All Members
involved:

Objectives: Finalize reliability, testability, and documentation required for
CS492.

Tasks:

Task 14.1 Build a requirements traceability matrix (FR — tests — results).
Task 14.2 End-to-end tests for golden flows across web + mobile (+
extension if included).

Task 14.3 Security/privacy checklist verification (consent logs, deletion,
access control).

Task 14.4 Final demo script + final report writing + final architecture
diagrams.

Deliverables

D14.1: Final demo build
D14.2: Test report

D14.3: Final documentation

Agreemind (T2516) Work Packages Gantt Chart (C5491 + C5492)

. . T T . T T .
P o 5P 5 1“16 & o5 o
o « o I & o v o

4.4 Ensuring Proper Teamwork

We followed an adapted Scrum workflow that fits our course schedule and the
iterative nature of Agreemind. We worked in short 1-2 week sprints, re-
prioritizing tasks as requirements and implementation constraints became
clearer (e.g., focusing first on a web demo and core backend pipeline). We
tracked all tasks in Jira (backlog, assignees, sprint goals, and status) so

individual contributions and progress were visible and reviewable.

We coordinated through regular meetings and daily communication on
WhatsApp/Discord to resolve potential problems quickly. Key decisions (scope
changes, architecture choices, and milestone definitions) were summarized
back into Jira to keep an auditable record. Work was organized into work

packages with rotating leadership.

Overall everyone contributed to every part of the project, we did not have
specific limits for who did which part, we asked each other for help whenever
we needed and everyone contributed to every single part of the project.

4.5 Ethics and Professional Responsibilities

The development of Agreemind is governed by a strict ethical framework
prioritizing user sovereignty, transparency, and professional integrity. We
explicitly define the system as an informational tool rather than a legal advisor
to prevent dangerous over-reliance, ensuring all risk assessments are clearly
labeled as probabilistic. To protect sensitive legal data, we adhere to "Privacy
by Design" principles, enforcing end-to-end encryption and ensuring that no
user-uploaded documents are used to train global models without explicit opt-
in. Furthermore, our team actively mitigates algorithmic bias through regular
model validation and transparency features that explain the rationale behind
risk flags, while adhering to ACM and IEEE codes of ethics to maintain honest,
responsible engineering practices throughout the project lifecycle.

4.6 Planning for New Knowledge and Learning Strategies

The development of Agreemind requires our team to bridge the gap between
advanced software engineering and complex legal theory. To achieve our
objectives, we identify specific technical knowledge gaps and implement a
targeted learning strategy.

e Legal NLP & Advanced Models: To handle the unique complexity of
legal texts, we conduct research on specialized architectures capable of
processing long documents without losing context. We also study
abstractive summarization techniques through academic literature and
documentation, and we fine-tune models on open legal datasets to
ensure accurate simplification of clauses.

e Retrieval-Augmented Generation (RAG): Implementing the "Personal
Vault" requires mastering the RAG paradigm. We focus on learning
semantic search techniques and vector database management. This
allows us to understand optimal text-chunking strategies specifically for
legal queries.

e Cross-Platform & Extension Architecture: Adopting a unified
codebase for web and mobile requires learning to bridge native mobile
modules with React Native. Additionally, the browser extension
demands a study of modern browser standards to create a solution that
complies with strict security restrictions on background processes.

e Security & Encryption: Given the sensitivity of user contracts, we
engage in self-directed learning regarding client-side encryption and
authentication. We review industry security guidelines to ensure our
architecture meets the highest standards for encryption at rest and in
transit.

54

5 Glossary

Agreemind: The proposed consumer-facing legal-document assistant that
summarizes agreements, highlights risks, and helps users track obligations
without providing legal advice.

Agreement: A legal text the user uploads or shares (e.g., Terms of Service,
Privacy Policy, rental/subscription contract).

Clause: A meaningful segment of an agreement (sentence/paragraph/section)
that expresses a rule, right, limitation, or obligation.

Risk Flag: A detected clause category that may be unfavorable to the user
(e.g., data sharing, auto-renewal, unilateral change, arbitration).

Plain-Language Summary: A simplified explanation of an agreement or
clause written for non-expert users.

Obligation: An action the user must do (or avoid) according to the agreement
(e.g., payment, notice submission, compliance requirement).

Deadline / Notice Period: A time constraint extracted from the agreement
(e.g., cancellation window, renewal date, “within 30 days”).

Personal Vault: A secure personal repository where a user's processed
agreements, reports, and metadata are stored for later search and comparison.

Version Comparison: A feature that identifies and presents changes between
two versions of the same agreement (“what changed?”).

Analysis Pipeline: The backend processing steps applied to an agreement
(ingestion — text extraction — chunking — retrieval/classification —
summarization — report).

AnalysisJob: A backend job that represents one analysis request from a user
and its processing state (queued/running/completed/failed).

ConsentRecord: A stored record that the user explicitly permitted an
agreement to be processed (especially important if external APIs are used).

RAG (Retrieval-Augmented Generation): A method where the system
retrieves relevant text passages and constrains the LLM to answer using that
context.

Embedding: A numeric vector representation of text used to support semantic
search and retrieval in the vault.

Vector Store: A database/index optimized for similarity search over
embeddings (used for vault querying and context retrieval).

HNSW: A graph-based approximate nearest neighbor indexing method
commonly used for fast vector similarity search.

LLM (Large Language Model): A model used to generate
summaries/explanations; in your system it must be constrained to informational
output (not legal advice).

Custom Model: A smaller model you train/fine-tune for a specific subtask (e.g.,
risk classification or date extraction) to reduce cost and dependency on external
APIs.

55

NER (Named Entity Recognition): A technique to detect structured entities in
text (e.g., dates, organizations, money amounts).

Share Sheet / Share Intent: Mobile OS functionality that lets the user share a
webpage/text into Agreemind for on-demand analysis (instead of background
monitoring).

Privacy by Design: Designing the system to minimize data collection, enforce
access control, and prevent model training on user data without explicit opt-in.

GDPR / Right to be Forgotten: Data protection requirements that include user
deletion/export rights and limits on data retention/processing.

56

6 References

[1] Ironclad — Al-powered Contract Lifecycle Management Software (2025).
Retrieved from https://ironcladapp.com/product/ai-based-contract-

management

[2] Kira Systems — Al-powered Contract Analysis Software (2025). Retrieved
from https://Kira.ai/solutions/legal-workflow

[3] Luminance — Legal-Grade Al Contract & Document Review Software
(2025). Retrieved from https://luminance.com/solutions/legal/

[4] ToS;DR — Crowd-sourced ToS & Privacy Policy Ratings (2025). Retrieved
from https://tosdr.org

[5] Open Terms Archive — Public Archive of Online Terms & Conditions
(2025). Retrieved from https://opentermsarchive.org

[6] Termzy Al — Real-time ToS Detection Software (2025). Retrieved from
https://www.termzyai.com/#features

[7] LegalZoom — Online Legal Services & Legal Advice (2025). Retrieved from
https://www.legalzoom.com/

[8] Rocket Lawyer — Legal Documents, Advice & Lawyers (2025). Retrieved
from https://www.rocketlawyer.com/

57

https://ironcladapp.com/?utm_source=chatgpt.com
https://kira.ai/
https://luminance.com/
https://tosdr.org/?utm_source=chatgpt.com
https://www.termzyai.com/#features
https://www.legalzoom.com/
https://www.rocketlawyer.com/

	1 Introduction
	2 Current System
	3 Proposed System
	3.1 Overview
	3.2 Functional Requirements
	3.2.1 Document Ingestion & Preparation
	3.2.2 Contract Analysis
	3.2.3 Risk, Obligations & Deadlines
	3.2.4 Personal Vault & Querying
	3.2.5 On-Demand Proactive Protection
	3.2.6 Version Tracking & Change Detection
	3.2.7 Contract Comparison
	3.2.8 Rights Enforcer
	3.2.9 Alerts & Reminders

	3.3 Non-functional Requirements
	3.3.1 Usability
	3.3.2 Portability
	3.3.3 Maintainability
	3.3.4 Reliability
	3.3.5 Scalability
	3.3.6 Privacy

	3.4 Pseudo Requirements
	3.5 System Models
	3.5.1 Scenarios
	3.5.2 Use-Case Models
	3.5.3 Object and Class Model
	3.5.4 Dynamic Models
	3.5.5 User Interface

	4 Other Analysis Elements
	4.1 Consideration of Various Factors in Engineering Design
	4.1.1 Constraints
	4.1.2 Consideration of Global, Cultural, Social, Environmental, and Economic Factors in Engineering Design
	4.1.3 Standards

	4.2 Risks and Alternatives
	4.3 Project Plan
	4.4 Ensuring Proper Teamwork
	4.5 Ethics and Professional Responsibilities
	4.6 Planning for New Knowledge and Learning Strategies

	5 Glossary
	6 References

